A - MOLECULAR MODELING

1. Molecular Geometry
2. Molecular Properties
3. Stereochemistry
4. Molecular Energies
5. Conformational Analysis
6. Selected Examples in 3D Analysis
7. Molecular Graphics

B - PROTEIN STRUCTURE AND MODELING

1. Structural Bioinformatics (in progress) (*10)(*11)
2. Protein Structure (*)
3. Homology Modeling (in the pipeline)
4. Molecular Docking (*9)
5. Case Studies in Molecular Docking (in the pipeline)
6. Molecular Dynamics (*7)

C - DRUG DISCOVERY

1. Introduction to Drug Discovery (in the pipeline)
2. Principles of Rational Drug Design
3. Structure Activity Relationships (*3)
4. Bioisosterism (*8)
5. Success Stories in Drug Discovery (in progress) (*11)
6. Examples of Scaffold Morphing (*11)

D - STRUCTURE-BASED DRUG DESIGN

1. Structure-Based Drug Design: Analysis
2. Structure-Based Drug Design: Design
3. Structure-Based Drug Design: Examples

E - PHARMACOPHORE-BASED DRUG DESIGN
1. Pharmacophore-Based Drug Design: Analysis
2. Pharmacophore-Based Drug Design: Design
3. Pharmacophore-Based Drug Design: Examples

F - QSAR AND CHEMOMETRICS

1. QSAR Principles and Methods (*)
2. 3D-QSAR (*2)

G - SYNTHESIS AND LIBRARY DESIGN

1. Synthesis of Drugs (*4)
2. Library Design (*1)

H - PEPTIDOMIMETICS

1. Peptidomimetics
2. Peptidomimetics Examples (*)

I - ADME PROPERTIES AND PREDICTIONS

1. ADME Properties (*)

J - CHEMINFORMATICS

1. Cheminformatics, Principles and Applications (in progress) (*11)
2. Encoding Molecules (in the pipeline)
3. 3D Database Searching (*1)
4. Examples of 3D Database Searching (*6)
5. Molecular Similarity (*5)

K - GENERAL TOPICS

1. General Introduction on Drugs
2. Drug Discovery
3. Drug Development

(*) Released on Version 2.0
(*1) Released on Version 2.1
(*2) Released on Version 2.2
(*3) Released on Version 2.3
(*4) Released on Version 2.4
(*5) Released on Version 2.5
(*6) Released on Version 2.6
(*7) Released on Version 2.7
(*8) Released on Version 2.8
A. MOLECULAR MODELING

○ A1. MOLECULAR GEOMETRY
 ■ A1.1. 2D/3D
 ▪ A1.1.1 Molecules Considered as 2D Structures
 ▪ A1.1.2 The Three-Dimensional Shape of a Molecule
 ▪ A1.1.3 2D and 3D Representations
 ▪ A1.1.4 A Molecule: An Assembly of Atoms in 3D
 ▪ A1.1.5 Molecular Lego
 ▪ A1.1.6 Molecular Fragments for Constructing Molecules
 ■ A1.2. Conformers
 ▪ A1.2.1 A Molecule is a Flexible Entity
 ▪ A1.2.2 Conformation Definition
 ▪ A1.2.3 Example of Conformations of a Molecule
 ▪ A1.2.4 Bioactive Conformation
 ■ A1.3. Torsion Angles
 ▪ A1.3.1 Interconversion Between Conformers
 ▪ A1.3.2 How Do Interconversions Occur?
 ▪ A1.3.3 Definition of the Conformers of a Molecule
 ▪ A1.3.4 The Torsion Angle Concept
 ▪ A1.3.5 Definition of Torsion Angles
 ▪ A1.3.6 Monitoring Torsion Angles
 ▪ A1.3.7 Newman Projections and Torsion Angles
 ▪ A1.3.8 Convention for the Sign of Torsion Angles
 ▪ A1.3.9 Ring Conformations
 ■ A1.4. Conformational Complexity
 ▪ A1.4.1 Rigid and Flexible Molecules
 ▪ A1.4.2 Codeine and Fenoxedil
 ▪ A1.4.3 Monitoring Torsion Angle Combinations
 ▪ A1.4.4 Conformational Explosion
 ■ A1.5. Ratio of Conformers
 ▪ A1.5.1 Mixtures of Conformers
 ▪ A1.5.2 Ratio of Conformers and Population
 ■ A1.6. CHAPTER QUIZZES (Available only in Teaching Package)
 ▪ A1.6.1 Quiz 1
 ▪ A1.6.2 Quiz 2
 ▪ A1.6.3 Quiz 3
 ▪ A1.6.4 Quiz 4
 ▪ A1.6.5 Quiz 5
 ▪ A1.6.6 Quiz 6
 ▪ A1.6.7 Quiz 7
 ▪ A1.6.8 Quiz 8
A2. MOLECULAR PROPERTIES

- A2.1. Introduction
 - A2.1.1 Properties of a Molecule
 - A2.1.2 Average of a Conformational-Dependent Property
 - A2.1.3 Importance of the 3D Molecular Geometries

- A2.2. Biological Properties
 - A2.2.1 Biological Properties of Proteins
 - A2.2.2 Biological Properties of Chiral Analgesics

- A2.3. Physical Properties
 - A2.3.1 Physical Properties
 - A2.3.2 Calculation of Other Physical Properties

- A2.4. Chemical Properties
 - A2.4.1 Chemical Properties
 - A2.4.2 Enolization of Keto-3 Steroids
 - A2.4.3 Relative Stability of Isomers
 - A2.4.4 Reactivity of Alkyl Halides
 - A2.4.5 SN2 Mechanism
 - A2.4.6 E2 Elimination Mechanism
 - A2.4.7 Molecular Geometries and Chemical Properties

- A2.5. Many Properties
 - A2.5.1 Many Properties of a Molecule

- A2.6. CHAPTER QUIZZES (Available only in Teaching Package)
 - A2.6.1 Quiz 1
 - A2.6.2 Quiz 2
 - A2.6.3 Quiz 3
 - A2.6.4 Quiz 4
 - A2.6.5 Quiz 5
 - A2.6.6 Quiz 6
 - A2.6.7 Quiz 7

A3. STEREOCHEMISTRY

- A3.1. Introduction
 - A3.1.1 Introduction on Stereochemistry
A3.1.2 Bond Lengths
A3.1.3 Bond Multiplicity
A3.1.4 Atom Size
A3.1.5 Electronegativity
A3.1.6 Hybridization
A3.1.7 Bond Angles
A3.1.8 Thorpe-Ingold Effect
A3.1.9 Torsion Angles
A3.1.10 Torsion Angle Sign Convention
A3.1.11 Examples of Torsion Angles
A3.1.12 Torsion Angle Descriptor (sp3-sp3)
A3.1.13 Torsion Angle Descriptor (sp2-sp3)

A3.2. Chirality
A3.2.1 Chirality
A3.2.2 Example 1
A3.2.3 Example 2
A3.2.4 Chirality Descriptor: Optical Rotation
A3.2.5 Chirality Nomenclature
A3.2.6 The Order of Priority
A3.2.7 Examples of R/S Assignments
A3.2.8 The Newman Projection
A3.2.9 The Fischer Projection
A3.2.10 Chirality: D/L
A3.2.11 D-alanine
A3.2.12 L-alanine
A3.2.13 Chirality: Erythro/Threo
A3.2.14 Threo
A3.2.15 Erythro
A3.2.16 Other Examples of Chiral Molecules

A3.3. Double Bonds
A3.3.1 Cis-Trans Stereochemistry of Double Bonds
A3.3.2 E/Z Stereochemistry of Double Bonds
A3.3.3 s-cis/s-trans Conformations
A3.3.4 Re/Si Nomenclature of the Faces of Double Bonds

A3.4. Rings
A3.4.1 Rings
A3.4.2 Chair
A3.4.3 Boat
A3.4.4 Twist Boat
A3.4.5 Crown
A3.4.6 Rings: Axial and Equatorial Orientations

A3.5. Symmetry
A3.5.1 Introduction on Symmetry Operations
A3.5.2 Symmetry C2
A3.5.3 Symmetry C3
A3.5.4 Symmetry Sigma
A3.5.5 Inversion (i)
A3.5.6 Example of Inversion
A3.5.7 Rotatory Reflection (Sn)
A3.6. CHAPTER QUIZZES (Available only in Teaching Package)

- A3.6.1 Quiz 1
- A3.6.2 Quiz 2
- A3.6.3 Quiz 3
- A3.6.4 Quiz 4
- A3.6.5 Quiz 5
- A3.6.6 Quiz 6
- A3.6.7 Quiz 7
- A3.6.8 Quiz 8
- A3.6.9 Quiz 9
- A3.6.10 Quiz 10
- A3.6.11 Quiz 11
- A3.6.12 Quiz 12
- A3.6.13 Quiz 13
- A3.6.14 Quiz 14
- A3.6.15 Quiz 15
- A3.6.16 Quiz 16
- A3.6.17 Quiz 17
- A3.6.18 Quiz 18
- A3.6.19 Quiz 19
- A3.6.20 Quiz 20
- A3.6.21 Quiz 21
- A3.6.22 Quiz 22
- A3.6.23 Quiz 23
- A3.6.24 Quiz 24
- A3.6.25 Quiz 25
- A3.6.26 Quiz 26
- A3.6.27 Quiz 27
- A3.6.28 Quiz 28
- A3.6.29 Quiz 29
- A3.6.30 Quiz 30

A4. MOLECULAR ENERGIES

- A4.1. Introduction
 - A4.1.1 Internal Energy of a Molecule
 - A4.1.2 Internal Energy Associated to a Conformation
 - A4.1.3 Transition State
 - A4.1.4 Potential Surface
 - A4.1.5 Thermodynamics & Kinetics

- A4.2. Thermodynamics
 - A4.2.1 Thermodynamics: Conformer Populations
 - A4.2.2 Thermodynamics: Boltzmann Equation
 - A4.2.3 Boltzmann Population Analysis for Two Conformers
 - A4.2.4 Boltzmann Population Analysis for 3 Conformers
 - A4.2.5 Thermodynamics: Cyclohexane Example
 - A4.2.6 Thermodynamics: Methylcyclohexane Example

- A4.3. Kinetics
 - A4.3.1 Kinetics
 - A4.3.2 Kinetics: Arrhenius Equation
A4.3.3 Kinetics: Arrhenius Graph
A4.3.4 Kinetics Ethane Example
A4.3.5 Kinetics Cyclohexane Example
A4.3.6 Kinetics Amide Bond Example

A4.4. Molecular Modeling
A4.4.1 Molecular Modeling
A4.4.2 Example of Kinetic or Thermodynamic Control
A4.4.3 Lowering the Energy of the Transition State
A4.4.4 Raising the Energy of the Transition State
A4.4.5 Modifying Conformers Populations
A4.4.6 Molecular Energies: The Key of Molecular Modeling

A4.5. Modeling in Drug Design
A4.5.1 Molecular Modeling in Drug Design
A4.5.2 Importance of Energies: the Morphinan Example
A4.5.3 Morphinan and D-nor Morphinan Alignment
A4.5.4 Conformational Analysis of Morphinan
A4.5.5 Conformational Analysis of D-nor Morphinan
A4.5.6 A Rationale for Explaining the Activities Observed
A4.5.7 Morphinan: Validation and Design
A4.5.8 Preferred Conformer of Active Enantiomer
A4.5.9 Preferred Conformer of Inactive Enantiomer
A4.5.10 Restoring Activities to the Inactive Analog?
A4.5.11 Morphinan Browser
A4.5.12 What We Can Learn From The Morphinan Example

A4.6. How to Calculate Energies
A4.6.1 The Need of Tools for Calculating Energies
A4.6.2 Two Methods for Calculating Energies

A4.7. Quantum Mechanics
A4.7.1 Calculation of Energies by the Schrodinger Equation
A4.7.2 Ab-Initio and Semi-empirical Calculations
A4.7.3 Calculation of Energies
A4.7.4 The Density Function Theory
A4.7.5 The Choice of a Method

A4.8. Molecular Mechanics
A4.8.1 Molecular Mechanics
A4.8.2 Force-Field
A4.8.3 Force Field Components
A4.8.4 Bond Lengths: Stretching Contributions
A4.8.5 Function
A4.8.6 Examples of Elementary Stretching Contributions
A4.8.7 Bond Angles: Bending Contributions
A4.8.8 Function
A4.8.9 Examples of Elementary Bending Contributions
A4.8.10 Torsion Angles: Torsional Contributions
A4.8.11 Function
A4.8.12 Examples of Elementary Torsional Contributions
A4.8.13 Van der Waals Interactions
A4.8.14 Function
A4.8.15 Examples of Elementary Van der Waals
A4.8.16 Electrostatic Dipolar Contributions
A4.8.17 Function
A4.8.18 Examples of Elementary Electrostatic Contributions
A4.8.19 Hydrogen Bond Energy Contributions
A4.8.20 Function
A4.8.21 Examples of Elementary Hydrogen Bond Contributions
A4.8.22 Total Energy in a Force Field Calculation
A4.8.23 Main Force Fields
A4.8.24 What One Should Remember
A4.8.25 Relative Energies

A4.9. CHAPTER QUIZZES (Available only in Teaching Package)
A4.9.1 Quiz 1
A4.9.2 Quiz 2
A4.9.3 Quiz 3
A4.9.4 Quiz 4
A4.9.5 Quiz 5
A4.9.6 Quiz 6
A4.9.7 Quiz 7
A4.9.8 Quiz 8
A4.9.9 Quiz 9
A4.9.10 Quiz 10
A4.9.11 Quiz 11
A4.9.12 Quiz 12
A4.9.13 Quiz 13
A4.9.14 Quiz 14
A4.9.15 Quiz 15
A4.9.16 Quiz 16
A4.9.17 Quiz 17
A4.9.18 Quiz 18
A4.9.19 Quiz 19
A4.9.20 Quiz 20
A4.9.21 Quiz 21
A4.9.22 Quiz 22
A4.9.23 Quiz 23
A4.9.24 Quiz 24
A4.9.25 Quiz 25
A4.9.26 Quiz 26
A4.9.27 Quiz 27
A4.9.28 Quiz 28
A4.9.29 Quiz 29
A4.9.30 Quiz 30
A4.9.31 Quiz 31
A4.9.32 Quiz 32
A4.9.33 Quiz 33
A4.9.34 Quiz 34
A4.9.35 Quiz 35
A4.9.36 Quiz 36
A4.9.37 Quiz 37
A4.9.38 Quiz 38
A4.9.39 Quiz 39
A4.9.40 Quiz 40
A5. CONFORMATIONAL ANALYSIS

- A5.1. Introduction
 - A5.1.1 Geometries, Energies and Conformational Analysis
 - A5.1.2 Energy Profile: a Global Information
 - A5.1.3 Definition of Conformational Analysis

- A5.2. Potential Surface
 - A5.2.1 Conformational Potential Surface: One Rotation
 - A5.2.2 Conformational Potential Surface: Two Rotations
 - A5.2.3 Conformational Potential Surface
 - A5.2.4 Special Forms
 - A5.2.5 Interconversion Between Conformers
 - A5.2.6 Energy Barriers
 - A5.2.7 Interconversion Pathway

- A5.3. Conformational Analysis
 - A5.3.1 Conformational Analysis Principles
 - A5.3.2 Systematic Scanning of All Potential Surfaces
 - A5.3.3 Systematic Scanning is Time Consuming
 - A5.3.4 How to Reduce Conformational Search?
 - A5.3.5 One Conformer Represents a Whole Family
 - A5.3.6 Working with a Set of Representative Conformers
 - A5.3.7 Sildenafil Example
 - A5.3.8 Family Representatives: Small Rings
 - A5.3.9 Family Representatives: Acyclic Bonds
 - A5.3.10 Consequence: Minimization Treatments
 - A5.3.11 Example: Analysis of Elementary Fragments
 - A5.3.12 Example: Generation of Representative Conformers
 - A5.3.13 Example: Results of Conformational Analysis
 - A5.3.14 Conformational Analysis Principles: Summary

- A5.4. Minimizations
 - A5.4.1 Definition of the Minimization of a Conformer
 - A5.4.2 Improved Geometries and Good Energies
 - A5.4.3 The Minimization Treatment
 - A5.4.4 How Does Minimization Works?
 - A5.4.5 Minimization Methods
 - A5.4.6 Many Variables Are Minimized
 - A5.4.7 Minimization is a Time-Consuming Treatment

- A5.5. Examples of Minimization
 - A5.5.1 Minimization with Stretching Strain
 - A5.5.2 Minimization with Bending Strain
 - A5.5.3 Minimization with Torsional Strain
 - A5.5.4 Minimization with Van der Waals Strain
 - A5.5.5 Minimization with Electrostatic Component
 - A5.5.6 Minimization with Hydrogen Bond Component
 - A5.5.7 Typical Minimization Example
 - A5.5.8 Distribution of Energy Strain

- A5.6. Conformational Analysis in Drug Design
 - A5.6.1 Conformational Analysis in Drug Design
A5.6.2 Energy of the Bioactive Form
A5.6.3 Low Energy of the Bioactive Conformation
A5.6.4 Geometry of the Bioactive Conformation
A5.6.5 The Experienced Molecular Modeler
A5.6.6 Common Errors Made with Minimization
A5.6.7 Example 1
A5.6.8 Example 2

A5.7. Molecular Dynamics
A5.7.1 Molecular Dynamics
A5.7.2 Theoretical Basis of Molecular Dynamic Calculations
A5.7.3 Local Minima and Global Minimum
A5.7.4 Simulated Annealing, a Special Type of Dynamics
A5.7.5 Coherency of Molecular Motions
A5.7.6 A Typical Molecular Dynamics Run

A5.8. CHAPTER QUIZZES (Available only in Teaching Package)
A5.8.1 Quiz 1
A5.8.2 Quiz 2
A5.8.3 Quiz 3
A5.8.4 Quiz 4
A5.8.5 Quiz 5
A5.8.6 Quiz 6
A5.8.7 Quiz 7
A5.8.8 Quiz 8
A5.8.9 Quiz 9
A5.8.10 Quiz 10
A5.8.11 Quiz 11
A5.8.12 Quiz 12
A5.8.13 Quiz 13
A5.8.14 Quiz 14
A5.8.15 Quiz 15
A5.8.16 Quiz 16
A5.8.17 Quiz 17
A5.8.18 Quiz 18
A5.8.19 Quiz 19
A5.8.20 Quiz 20
A5.8.21 Quiz 21
A5.8.22 Quiz 22
A5.8.23 Quiz 23
A5.8.24 Quiz 24
A5.8.25 Quiz 25
A5.8.26 Quiz 26
A5.8.27 Quiz 27
A5.8.28 Quiz 28
A5.8.29 Quiz 29
A5.8.30 Quiz 30
A5.8.31 Quiz 31
A5.8.32 Quiz 32
A5.8.33 Quiz 33
A5.8.34 Quiz 34
A5.8.35 Quiz 35
A6. SELECTED EXAMPLES IN 3D ANALYSIS

A6.1. Conformational Analysis
- A6.1.1 Ethane
- A6.1.2 n-Butane
- A6.1.3 1-Butene
- A6.1.4 Butadiene
- A6.1.5 Amide
- A6.1.6 Cyclohexane

A6.2. Conjugated Systems
- A6.2.1 Butadiene
- A6.2.2 Pentenone
- A6.2.3 Dipyrrrole
- A6.2.4 Biphenyl
- A6.2.5 Atropisomerism of Biphenyls
- A6.2.6 Binaphthyl

A6.3. Aromatic Systems
- A6.3.1 Planarity of Polyaromatic Systems
- A6.3.2 Distorted Naphthalene
- A6.3.3 Annelated Polyaromatic Benzenes

A6.4. Cyclic Systems
- A6.4.1 Why Substituents Prefer to be Equatorial?
- A6.4.2 Mono-Substituted Cyclohexanes
- A6.4.3 t-Bu
- A6.4.4 Phenyl
- A6.4.5 Methyl
- A6.4.6 Hydroxy
- A6.4.7 Example of Preferred Axial Conformer
- A6.4.8 Di-Methyl-1,2-Cyclohexane
- A6.4.9 Trans
- A6.4.10 Cis
- A6.4.11 Di-Methyl-1,3-Cyclohexane
- A6.4.12 Trans
- A6.4.13 Cis
- A6.4.14 Di-Methyl-1,4-Cyclohexane
- A6.4.15 Trans
- A6.4.16 Cis
- A6.4.17 Trans 1,3-Di-t-Butyl-Cyclohexane
- A6.4.18 Chloro-2 Cyclohexanone

A6.5. Other Systems
- A6.5.1 Decalins
- A6.5.2 Cis-decalin
A7. MOLECULAR GRAPHICS

A7.1. Introduction
 A7.1.1 Importance of Molecular Graphics
 A7.1.2 Almost Science Fiction
 A7.1.3 History of Molecular Visualizations
 A7.1.4 Commercially Available Molecular Kits
 A7.1.5 Progress in Graphical Hardware and Algorithms
 A7.1.6 Algorithm 1
 A7.1.7 Algorithm 2
 A7.1.8 Molecular Graphics Functions

A7.2. 3D Perception
 A7.2.1 The Perception of the Third Dimension
 A7.2.2 From 3D Coordinates to Screen Coordinates
 A7.2.3 Real Time Manipulation
 A7.2.4 Depth Cueing
 A7.2.5 Perspective
 A7.2.6 Stereo
 A7.2.7 Hardware Stereo

A7.3. Visualization
 A7.3.1 3D Representation of Small Molecules
 A7.3.2 Line
 A7.3.3 Stick
 A7.3.4 Ball & Stick
 A7.3.5 CPK
 A7.3.6 Quality of Rendering
 A7.3.7 Atomic Color-Code Convention
 A7.3.8 Coloring Molecules or Sets of Atoms
 A7.3.9 By Atom-type
 A7.3.10 By Molecule
 A7.3.11 By Color
 A7.3.12 By Properties
 A7.3.13 Labeling Functionalities
 A7.3.14 Atom Labels
 A7.3.15 Atom Numbering
 A7.3.16 Proteins Representation
 A7.3.17 Carbon Alpha
 A7.3.18 Ribbon Representation
 A7.3.19 Ribbon Types
 A7.3.20 Visualization of Protein Properties

A7.4. Editing & Manipulation
A7.4.1 Structure Manipulation & Editing
A7.4.2 Add Atoms Function
A7.4.3 Delete Atoms Function
A7.4.4 Fuse Atoms Function
A7.4.5 Connect atoms Function
A7.4.6 3D Molecular Constructions
A7.4.7 Real-Time Rotations, Translations and Zoom
A7.4.8 Translations
A7.4.9 Rotations
A7.4.10 Zoom
A7.4.11 Control of Torsion Angles
A7.4.12 Slab and Clip

A7.5. Surfaces & Volumes
A7.5.1 Concept and Definition of Molecular Surfaces
A7.5.2 Van der Waals
A7.5.3 Solvent
A7.5.4 Connolly
A7.5.5 Surface Types
A7.5.6 Normal
A7.5.7 Transparent
A7.5.8 Dots
A7.5.9 Visualization of Properties on Molecular Surfaces
A7.5.10 Color Coded
A7.5.11 Visualization of Properties on Molecular Surfaces
A7.5.12 The Visualization of Volumes
A7.5.13 Mathematical Boolean Operations with Volumes

A7.6. Visualizing Interactions
A7.6.1 Visualization of Hydrogen Bonds
A7.6.2 Visualization of Molecular Bumps
A7.6.3 Surface Representations for Bump Analyses
A7.6.4 Complementary Surface Properties
A7.6.5 Electrostatic Potentials
A7.6.6 Lipophilicity Potentials
A7.6.7 Visualization of Intramolecular Interaction
A7.6.8 Schematic Complex Interaction
A7.6.9 Visualization of a Complex Cavity
A7.6.10 Results of Quantum Mechanical Calculations

A7.7. CHAPTER QUIZZES (Available only in Teaching Package)
A7.7.1 Quiz 1
A7.7.2 Quiz 2
A7.7.3 Quiz 3
A7.7.4 Quiz 4
A7.7.5 Quiz 5
A7.7.6 Quiz 6
A7.7.7 Quiz 7
A7.7.8 Quiz 8
A7.7.9 Quiz 9
A7.7.10 Quiz 10
A7.7.11 Quiz 11
A7.7.12 Quiz 12
B. PROTEIN STRUCTURE AND MODELING

○ B1. STRUCTURAL BIOINFORMATICS

■ B1.1. Introduction to Structural Bioinformatics
 ■ B1.1.1 Challenges in the Post Genomic Era
 ■ B1.1.2 The Informational Chaos
 ■ B1.1.3 Integration through Computational Science
 ■ B1.1.4 Structural Bioinformatics
 ■ B1.1.5 Grouping Fields into One Discipline
 ■ B1.1.6 3D Basis of Structural Bioinformatics
 ■ B1.1.7 The Structural Genomics Effort
 ■ B1.1.8 The Protein Structure Initiative
 ■ B1.1.9 Strategy of the Protein Structure Initiative
 ■ B1.1.10 The Structural Genomics Consortium
 ■ B1.1.11 Global Planning of Structural Genomics
 ■ B1.1.12 The Impact of Structural Genomics
 ■ B1.1.13 The Relationship between Structure and Function
 ■ B1.1.14 Example of a Structure-Function Relationship
 ■ B1.1.15 Learning from Evolution
 ■ B1.1.16 Learning from Structural Folds
 ■ B1.1.17 Learning from Molecular Shape
 ■ B1.1.18 Example of Knowledge Derived from 3D Structure
 ■ B1.1.19 Is Structure Sufficient to Predict Function?
 ■ B1.1.20 Exploiting Knowledge to Design New Drugs
 ■ B1.1.21 Bridge between Genomics and Drug Discovery
 ■ B1.1.22 Tools Developed by Structural Bioinformatics

■ B1.2. Architecture of Biomolecules
 ■ B1.2.1 Biomolecules in the Cell
 ■ B1.2.2 DNA/RNA Structure
 ■ B1.2.3 DNA is the Genetic Material
 ■ B1.2.4 DNA Variability
B1.2.5 Importance of the DNA 3D Structure
B1.2.6 The Building Blocks
B1.2.7 Base
B1.2.8 Sugar
B1.2.9 Phosphate
B1.2.10 Putting the Building Blocks Together
B1.2.11 Nomenclature of Nucleotides and Nucleosides
B1.2.12 Nucleotides of Nucleic Acids
B1.2.13 The Double Helix Structure
B1.2.14 DNA Helices are Antiparallel
B1.2.15 Hydrogen Bonding Pattern
B1.2.16 Aromatic Base Stacking
B1.2.17 Major and Minor Grooves
B1.2.18 DNA forms
B1.2.19 G-Quadruplex Conformation
B1.2.20 DNA versus RNA
B1.2.21 3D Folds of RNA
B1.2.22 Protein Structure
B1.2.23 Proteins are Fundamental to Life
B1.2.24 Structural Diversity of Proteins
B1.2.25 Importance of Protein 3D Structures
B1.2.26 Chemical Nature of Proteins
B1.2.27 Challenges in Understanding Protein Structure
B1.2.28 Protein Structure Complexity
B1.2.29 The Four Levels of Protein Architecture
B1.2.30 Primary Structure
B1.2.31 Secondary Structure
B1.2.32 Tertiary Structure
B1.2.33 Quaternary Structure

B1.3. Biomolecular Properties
B1.3.1 Protein Flexibility and Motion
B1.3.2 Importance of Dynamic Motions in Biological Processes
B1.3.3 Example of Function: ATP Synthase
B1.3.4 Example of Function: DNA Biosynthesis
B1.3.5 Example of Function: Molecular Switch
B1.3.6 Example of Induced-Fit: RNA-Protein Recognition
B1.3.7 Example of Induced-Fit: Ubiquitous Proteins
B1.3.8 Types of Molecular Motions
B1.3.9 Time Scale of Protein Motion
B1.3.10 Methods to Study Protein Motions
B1.3.11 Experimental Techniques to Study Protein Motions
B1.3.12 Simulation Methods to Study Protein Motions
B1.3.13 Normal Mode Analyses (NMA)
B1.3.14 Molecular Dynamics vs Normal Mode Analyses
B1.3.15 Database of Macromolecular Movements

B1.4. Assembly of Biomolecules
B1.4.1 Biological Molecule Association
B1.4.2 Molecular Recognition
B1.4.3 The Recognition Process
B1.4.4 Complementary Features Upon Binding
B1.4.5 Role of Native Protein Configuration
B1.4.6 Tolerance Upon Binding
B1.4.7 The "Induced-Fit" Theory
B1.4.8 Example of Enzyme Adaptation to Inhibitor Binding
B1.4.9 Example of Ligand Adaptation upon Binding
B1.4.10 Maximizing Surface Contacts
B1.4.11 Motions Associated to Induced-Fit
B1.4.12 Experimental Evidence of the Induced-Fit Model
B1.4.13 Large Rearrangements
B1.4.14 Role of Large Rearrangements
B1.4.15 The Domino Effect
B1.4.16 Proteins Described as Ensemble of Conformations
B1.4.17 Energy Landscape of a Protein
B1.4.18 Conformational Selection Operated by a Ligand
B1.4.19 Energetic Induction Upon Binding
B1.4.20 Forces Involved in Molecular Recognition
B1.4.21 Van der Waals Forces
B1.4.22 Electrostatic Interactions
B1.4.23 Hydrogen Bonds
B1.4.24 Solvent Effect
B1.4.25 The Role of the Solvent
B1.4.26 The Hydrophobic Effect
B1.4.27 The Entropic Effects
B1.4.28 Enthalpy-Entropy Compensation
B1.4.29 Assessing Binding Interactions
B1.4.30 Free Energy of Binding
B1.4.31 Importance of Free Energy of Binding
B1.4.32 Experimental Measures of Binding Affinities
B1.4.33 Titration Curve to Measure Kd
B1.4.34 Scatchard-Rosenthal Plots
B1.4.35 Conversion of Kd into Energies
B1.4.36 Theoretical Prediction of Binding Energies
B1.4.37 Solving the Schrodinger Equation
B1.4.38 Molecular Mechanics
B1.4.39 Force-Field
B1.4.40 Example of Force-Fields
B1.4.41 Other Methods
B1.4.42 Incorporation of the Solvent

B1.5. Obtaining Macromolecular 3D-Structures
B1.5.1 Experimental Methods
B1.5.2 X-ray Crystallography
B1.5.3 Protein Production and Purification
B1.5.4 Growing of Single Crystal
B1.5.5 The Single Crystal
B1.5.6 Collecting the Diffraction Data
B1.5.7 Recovering the Phase Angle
B1.5.8 Structure Determination and Refinement
B1.5.9 Atomic Coordinates
B1.5.10 The Advantages of X-ray Crystallography
B1.5.11 The Limitations of X-ray Crystallography
B1.5.12 NMR Spectroscopy
B2. PROTEIN STRUCTURE

B2.1. Structural and Functional Diversity of Proteins
- B2.1.1 Proteins are Fundamental to Life
- B2.1.2 Great Diversity of Protein Biological Functions
- B2.1.3 Chemical Nature of Proteins
- B2.1.4 Structural Diversity of Proteins

B2.2. Link between Protein Sequence, Folding and Function
- B2.2.1 Importance of Protein 3D Structures
- B2.2.2 Protein Folding
- B2.2.3 Anfinsen's Dogma
- B2.2.4 Anfinsen's Dogma and Levinthal's Paradox
- B2.2.5 The Pathway Theory and Energy Funnels
- B2.2.6 Mechanisms of Protein Folding
- B2.2.7 The Protein Misfolding Problem
- B2.2.8 Challenge in Understanding Protein Structure

B2.3. Amino Acids: Building Blocks of Proteins
- B2.3.1 Amino acids: Building Blocks of Proteins
- B2.3.2 α-Amino Acids
- B2.3.3 α-Amino Acid Stereoisomers
- B2.3.4 Diversity of the Properties of Amino Acids
- B2.3.5 Amino Acids Properties
- B2.3.6 Classification of Amino Acids Properties
- B2.3.7 Non-Standard Amino Acids

B2.4. From Amino Acids to Proteins
- B2.4.1 Amino Acids are Linked by Peptide Bonds
- B2.4.2 Peptide Biosynthesis
- B2.4.3 Polymer Amino-Acids
- B2.4.4 Length of Proteins
- B2.4.5 More than One Polypeptide Chain
- B2.4.6 Conjugated Proteins
- B2.4.7 Examples of Conjugated Proteins
- B2.4.8 Cross-Linked Polypeptide Chains

B2.5. Geometry of Proteins and Peptides
- B2.5.1 Peptide Bonds are Planar
- B2.5.2 Why the Peptide Bond is Planar?
- B2.5.3 Cis and Trans Isomers of the Peptide Bond
B2.5.4 Trans Isomer Favored
B2.5.5 Isomers of Proline
B2.5.6 Peptide Torsion Angles
B2.5.7 Conformational Freedom
B2.5.8 Conformational Complexity of Polypeptide Chains
B2.5.9 Not All ϕ/ψ Torsion Angles are Possible
B2.5.10 The Ramachandran Plot
B2.5.11 ϕ and ψ Distribution
B2.5.12 Interactive Ramachandran Plot
B2.5.13 Torsion Angles Observed in Proteins
B2.5.14 Glycine Residue Torsion Angles
B2.5.15 Side Chain Conformations
B2.5.16 Side Chain Atomic and 3D Nomenclature
B2.5.17 Side Chain Conformations
B2.5.18 Non-Rotameric Side Chain Conformations

B2.6. Protein Structure Overview
B2.6.1 Protein Structure Complexity
B2.6.2 The Four Levels of Protein Architecture
B2.6.3 Primary Structure
B2.6.4 Secondary Structure
B2.6.5 Tertiary Structure
B2.6.6 Quaternary Structure
B2.6.7 Forces Involved in Protein Stability
B2.6.8 Proteins are not Static
B2.6.9 Representing Protein Structures
B2.6.10 Wireframe Representation
B2.6.11 Ball and Stick Representation
B2.6.12 Cα Trace Representation
B2.6.13 Ribbon Representation
B2.6.14 Cartoon Representation
B2.6.15 Space Filling - CPK Representation
B2.6.16 Surface Representation

B2.7. Primary Structure
B2.7.1 Primary Structure
B2.7.2 Unique Primary Structure for Each Protein
B2.7.3 Primary Sequence and Protein Properties

B2.8.1 Secondary Structure
B2.8.2 Periodic and Non Periodic Secondary Structure Elements
B2.8.3 Hydrogen Bonds in Secondary Structure Elements
B2.8.4 The α-Helix
B2.8.5 Packing of the α-Helix
B2.8.6 ϕ and ψ Torsion Angles of the α-Helix
B2.8.7 Two Enantiomeric α-Helices
B2.8.8 Geometry Described with Pitch and Rise
B2.8.9 Helix Macro-Dipole
B2.8.10 Amphipathic Character of the α Helix
B2.8.11 3(10)-Helix and π-Helix
B2.8.12 Helices Geometrical Parameters
B2.8.13 Occurrence of Helices in Proteins
B2.8.14 The β-Sheet
B2.8.15 The β-Strand Unit
B2.8.16 φ and ψ Torsion Angles in β-Sheets
B2.8.17 Stability of the β-Sheet
B2.8.18 Parallel and Anti-Parallel β-Sheets
B2.8.19 Occurrence of β-Sheets in Proteins
B2.8.20 Twist of the β-sheet
B2.8.21 Turns
B2.8.22 β-Turns
B2.8.23 φ and ψ Torsion Angles of β Turns
B2.8.24 Non-Regular Coil and Loops
B2.8.25 Coil
B2.8.26 Loops

B2.9.1 Super-Secondary Structures and Motifs
B2.9.2 Classification of Super-Secondary Structures
B2.9.3 All β super-secondary structures
B2.9.4 β-Hairpin
B2.9.5 β-Meander
B2.9.6 Greek-Key
B2.9.7 All α Super-Secondary Structures
B2.9.8 αα-Hairpin
B2.9.9 αα-Corners
B2.9.10 EF Hand
B2.9.11 Helix-Turn-Helix
B2.9.12 Four-Helix Bundle
B2.9.13 Mixed α & β Super-Secondary Structures
B2.9.14 β-α-β Motif
B2.9.15 Rossmann Fold

B2.10. Tertiary Structure
B2.10.1 Tertiary Structure
B2.10.2 Domains in the Tertiary Structure
B2.10.3 Domains and Sequence
B2.10.4 Domains and Function
B2.10.5 New Look on Proteins Levels of Architecture
B2.10.6 Blurred Boundaries
B2.10.7 Tertiary Structure Patterns: Folds
B2.10.8 Fold Diversity
B2.10.9 Protein Folds and Function
B2.10.10 Classification of Protein Folds
B2.10.11 Mainly α Folds
B2.10.12 Mainly β Folds
B2.10.13 Mixed α-β Folds
B2.10.14 Databases of Folds

B2.11. Quaternary Structure
B2.11.1 Quaternary Structure
B2.11.2 Dimers, trimers, tetramers etc...
B2.11.3 Homo-Oligomers: Identical Polypeptide Chains
B2.11.4 Hetero-Oligomers: Different Polypeptide Chains
B2.12. Structural Classification of Proteins
 - B2.12.1 Structural Classification of Proteins
 - B2.12.2 Globular Proteins
 - B2.12.3 Hydrophilic Surface and Hydrophobic Core
 - B2.12.4 Hydrophobic Effect
 - B2.12.5 Hydration Layer
 - B2.12.6 Membrane Proteins
 - B2.12.7 The Lipid Bilayer
 - B2.12.8 Membrane Model
 - B2.12.9 Membrane Proteins Types
 - B2.12.10 Transmembrane Protein Surface
 - B2.12.11 Transmembrane Protein Folds
 - B2.12.12 Fibrous Proteins
 - B2.12.13 Collagen
 - B2.12.14 α-Keratin
 - B2.12.15 Silk Fibroin

B2.13. Perspectives
 - B2.13.1 The History
 - B2.13.2 The Pharmaceutical Connection
 - B2.13.3 A Fascinating Field

B2.14. CHAPTER QUIZZES (Available only in Teaching Package)
 - B2.14.1 Quiz 1
 - B2.14.2 Quiz 2
 - B2.14.3 Quiz 3
 - B2.14.4 Quiz 4
 - B2.14.5 Quiz 5
 - B2.14.6 Quiz 6
 - B2.14.7 Quiz 7
 - B2.14.8 Quiz 8
 - B2.14.9 Quiz 9
 - B2.14.10 Quiz 10
 - B2.14.11 Quiz 11
 - B2.14.12 Quiz 12
 - B2.14.13 Quiz 13
 - B2.14.14 Quiz 14
 - B2.14.15 Quiz 15
 - B2.14.16 Quiz 16
 - B2.14.17 Quiz 17
 - B2.14.18 Quiz 18
 - B2.14.19 Quiz 19
 - B2.14.20 Quiz 20
 - B2.14.21 Quiz 21
 - B2.14.22 Quiz 22
 - B2.14.23 Quiz 23
 - B2.14.24 Quiz 24
 - B2.14.25 Quiz 25
 - B2.14.26 Quiz 26
 - B2.14.27 Quiz 27
 - B2.14.28 Quiz 28
 - B2.14.29 Quiz 29
- B2.14.30 Quiz 30
- B2.14.31 Quiz 31
- B2.14.32 Quiz 32
- B2.14.33 Quiz 33
- B2.14.34 Quiz 34
- B2.14.35 Quiz 35
- B2.14.36 Quiz 36
- B2.14.37 Quiz 37
- B2.14.38 Quiz 38
- B2.14.39 Quiz 39
- B2.14.40 Quiz 40
- B2.14.41 Quiz 41
- B2.14.42 Quiz 42
- B2.14.43 Quiz 43
- B2.14.44 Quiz 44
- B2.14.45 Quiz 45
- B2.14.46 Quiz 46
- B2.14.47 Quiz 47
- B2.14.48 Quiz 48
- B2.14.49 Quiz 49
- B2.14.50 Quiz 50
- B2.14.51 Quiz 51
- B2.14.52 Quiz 52
- B2.14.53 Quiz 53
- B2.14.54 Quiz 54
- B2.14.55 Quiz 55
- B2.14.56 Quiz 56
- B2.14.57 Quiz 57
- B2.14.58 Quiz 58
- B2.14.59 Quiz 59
- B2.14.60 Quiz 60
- B2.14.61 Quiz 61
- B2.14.62 Quiz 62
- B2.14.63 Quiz 63
- B2.14.64 Quiz 64
- B2.14.65 Quiz 65
- B2.14.66 Quiz 66
- B2.14.67 Quiz 67
- B2.14.68 Quiz 68
- B2.14.69 Quiz 69
- B2.14.70 Quiz 70
- B2.14.71 Quiz 71
- B2.14.72 Quiz 72
- B2.14.73 Quiz 73
- B2.14.74 Quiz 74
- B2.14.75 Quiz 75
- B2.14.76 Quiz 76
- B2.14.77 Quiz 77
- B2.14.78 Quiz 78
- B2.14.79 Quiz 79
- B2.14.80 Quiz 80
B4. MOLECULAR DOCKING

B4.1. Introduction to Computational Docking
- B4.1.1 Molecular Recognition
- B4.1.2 Molecular Recognition Process: Molecular Docking
- B4.1.3 Understanding Molecular Recognition
- B4.1.4 Molecular Docking Models
- B4.1.5 The Lock and Key Theory
- B4.1.6 The Induced-Fit Theory
- B4.1.7 The Conformation Ensemble Model
- B4.1.8 From the Lock and Key to the Ensemble Model
- B4.1.9 Experimental Methods to Study Molecular Docking
- B4.1.10 Limitations of Experimental Techniques
- B4.1.11 A Bottleneck in Drug Discovery
- B4.1.12 Triggering the Computational Docking Discipline
- B4.1.13 Definition of Computational Docking
- B4.1.14 Applications of Computational Docking

B4.2. The Docking Problem
- B4.2.1 The Docking Problem
- B4.2.2 Great Diversity of Molecular Interactions
- B4.2.3 Atomic Basis of Molecular Recognition
- B4.2.4 Definition of the "Pose"
- B4.2.5 Docking Viewed as a Black Box
- B4.2.6 Current Computational Docking Programs
- B4.2.7 Simulation and non-Simulation Approaches
- B4.2.8 Simulation Approaches
- B4.2.9 Non-Simulation Approaches
- B4.2.10 Molecular Complementarity in Computational Docking
- B4.2.11 Shape Complementarity
- B4.2.12 Chemical Complementarity
- B4.2.13 Energy Dictates Molecular Associations
- B4.2.14 Find a Complex that Minimizes the Energy
- B4.2.15 Accounting for Molecular Flexibility in Docking
- B4.2.16 Flexible Docking: Increasing Levels of Complexity
- B4.2.17 Initial Data and Nature of the Docking Difficulty
- B4.2.18 Bound Docking
- B4.2.19 Unbound Docking
- B4.2.20 Modeled Docking
- B4.2.21 The Three Generations in Computational Docking
- B4.2.22 Three Components of Docking Software
B4.3. System Representation

- B4.3.1 Molecular Representation
- B4.3.2 Atomic Representation
- B4.3.3 Complexity of the Atomic Representation
- B4.3.4 Internal Coordinates
- B4.3.5 Protein Preparation
- B4.3.6 Small Molecule Preparation
- B4.3.7 Surface Representation
- B4.3.8 Molecular Surface Matching
- B4.3.9 Surface-Based Representation
- B4.3.10 Accessible Surface Area
- B4.3.11 Solvent Contact & Reentrant Surfaces
- B4.3.12 Example of Contact & Reentrant Surface
- B4.3.13 Describing the Molecular Shape
- B4.3.14 Connolly's Contact and Reentrant Surfaces
- B4.3.15 Sparse Surface
- B4.3.16 Delaunay Triangulation
- B4.3.17 "Knob" and "Hole" Descriptors
- B4.3.18 Using Knobs and Holes for Complementarity
- B4.3.19 Other Examples of Shape Descriptors
- B4.3.20 Grid Representation
- B4.3.21 Use of GRID Potentials to Simplify the Docking
- B4.3.22 Assessing Shape Complementarity Using Grid

B4.4. Scoring Methods

- B4.4.1 Need to Assess the Quality of Docked Complexes
- B4.4.2 A Good Understanding of the Binding
- B4.4.3 Important Questions
- B4.4.4 Molecular Determinants for Binding
- B4.4.5 Interaction Forces and Binding Energies
- B4.4.6 Favorable Forces
- B4.4.7 Unfavorable Forces
- B4.4.8 Desolvation Energies
- B4.4.9 Entropic Effects
- B4.4.10 Calculation of the Binding Energies
- B4.4.11 Free Energy Equations
- B4.4.12 Conversion of K to Energies
- B4.4.13 Difficulty of Calculating Free Energies of Binding ΔG
- B4.4.14 Approximating ΔG by Molecular Mechanics
- B4.4.15 Force-Field Calculations
- B4.4.16 CHARMM Force Field to Score the Docking
- B4.4.17 Approximating ΔG by Quantum Mechanics
- B4.4.18 Development of Scoring Functions for Docking
- B4.4.19 Scoring Functions
- B4.4.20 Empirical Scoring Functions
- B4.4.21 Example of Empirical Scoring Function
- B4.4.22 Knowledge-Based Scoring Functions
- B4.4.23 The Statistical Analyses
- B4.4.24 Knowledge-Based Potentials
- B4.4.25 The DrugScore Program
- B4.4.26 DrugScore: The Thrombin Example
- B4.4.27 Refinement of Scoring Functions
B4.4.28 Other Scoring Methods
B4.4.29 Shape and Property Complementarity Scoring
B4.4.30 Method to Measure Shape Complementarity
B4.4.31 Free Energy Perturbation

B4.5. Rigid Docking Methods
- B4.5.1 Docking Algorithms
- B4.5.2 The Mathematical Problem
- B4.5.3 Two Docking Philosophies
- B4.5.4 The Feature-Based Matching Approach
- B4.5.5 Docking Using Feature-Based Methods
- B4.5.6 Match Complementarity or Similarity Features
- B4.5.7 Components of Feature-Based Matching Methods
- B4.5.8 Step 1: Feature Extraction
- B4.5.9 Step 2: Feature Matching
- B4.5.10 Step 3: Transformation (Assembly)
- B4.5.11 Step 4: Filtering and Scoring
- B4.5.12 Virtual Screening and De Novo Design
- B4.5.13 Programs with Feature-Based Matching Methods
- B4.5.14 Algorithms of Matching
- B4.5.15 Clique-Search Based Approaches
- B4.5.16 Goal of the Docking Algorithm
- B4.5.17 Distance Compatibility Graph
- B4.5.18 Clique Detection Methods
- B4.5.19 Pose-Clustering
- B4.5.20 Searching for Compatible Triangles
- B4.5.21 Transformation that Align a Maximum of Triangles
- B4.5.22 Complementarity and Similarity Matching
- B4.5.23 Speed up of Pose-Clustering
- B4.5.24 The Bottleneck of Pose-Clustering
- B4.5.25 Geometric Hashing
- B4.5.26 Fast Retrieval of Matching Features
- B4.5.27 Invariant Representation of Features
- B4.5.28 Improvement of Pose-Clustering
- B4.5.29 PatchDock Example
- B4.5.30 The Stepwise Search Approach
- B4.5.31 Components of a Stepwise Docking Program
- B4.5.32 Exhaustive and Stochastic Search
- B4.5.33 Exhaustive vs. Stochastic Search
- B4.5.34 Exhaustive Search
- B4.5.35 Mapped-Grid Method
- B4.5.36 Physico-Chemical Properties of the Receptor
- B4.5.37 Assessing Shape Complementarity
- B4.5.38 Fast-Fourier Transform (FFT) Method
- B4.5.39 FFT vs. Exhaustive Method
- B4.5.40 FFT - Geometric Shape Complementarity
- B4.5.41 FFT - Different Scores
- B4.5.42 Docking of Plastocyanin and Cytochrome C
- B4.5.43 Spherical Polar Fourier Correlations - Fast FFT
- B4.5.44 Stochastic Algorithms
- B4.5.45 A Typical Computational Docking Program
- B4.5.46 Optimization Methods to Find the Best Solution
B4.5.47 Monte Carlo Methods
B4.5.48 Simulated Annealing
B4.5.49 Genetic Algorithms (GA)
B4.5.50 General Principle of GA
B4.5.51 Creating a New Generation
B4.5.52 Simulating the Reproduction Process
B4.5.53 Steps in Genetic Algorithms
B4.5.54 Lamarckian Genetic Algorithm
B4.5.55 Tabu Search
B4.5.56 Tabu Algorithm
B4.5.57 Avoiding Being Trapped in a Local Minimum
B4.5.58 Better Exploration of the Space
B4.5.59 The Hybrid Docking Method

B4.6. Methods for Incorporating Flexibility
B4.6.1 Implementation of Flexibility into Docking Software
B4.6.2 Degrees of Freedom in Flexible Docking
B4.6.3 Possible Classification of Methods for Flexibility
B4.6.4 Classification of Methods
B4.6.5 Incorporating Small Molecule Flexibility
B4.6.6 Modeling Small Molecules as Flexible Entities
B4.6.7 Small Molecule Flexibility
B4.6.8 Integration of Ligand Flexibility and Protein Structure
B4.6.9 Methods for Handling Ligand Flexibility Explicitly
B4.6.10 The Ensemble Docking Method
B4.6.11 Advantage of the Ensemble Docking Method
B4.6.12 The FLOG Software
B4.6.13 Problem of the Ensemble Docking Approach
B4.6.14 The Improved Ensemble Docking Method
B4.6.15 Remove Redundancy in the Rigid Fragment
B4.6.16 Remove Redundancy in the Flexible Fragment
B4.6.17 Score: Sum of Atom Interactions
B4.6.18 Step-1: Conformational Analysis
B4.6.19 Step-2: Superimposition and Positioning
B4.6.20 Step-3: Conformational Analysis
B4.6.21 Dramatic Improvement in Computing Time
B4.6.22 Efficient Treatment of Clashes
B4.6.23 Validation of the Lorber-Shoichet Method
B4.6.24 Extension to Analog Compounds
B4.6.25 The Fragmentation Docking Method
B4.6.26 Place-and-Join Algorithm
B4.6.27 Principle of the Place-and-Join Method
B4.6.28 Difficulty of the Place and Join Method
B4.6.29 Incremental-Based Methods
B4.6.30 Incremental Algorithm
B4.6.31 Stochastic Search Methods
B4.6.32 GOLD
B4.6.33 Incorporating Protein Flexibility
B4.6.34 Importance of Modeling Protein Flexibility
B4.6.35 Historical Note
B4.6.36 Flexibility Through Soft Scoring Functions
B4.6.37 Reduce the Importance of Steric Clashes
B4.6.38 Soft Van der Waals Repulsion Functions
B4.6.39 Decreasing Van der Waals Radii
B4.6.40 Soft Electrostatic Repulsion Potentials
B4.6.41 Soft Scoring Functions in Protein-Protein Docking
B4.6.42 Implicit Flexibility in Protein-Protein Docking
B4.6.43 Problems with Soft Scoring
B4.6.44 Soft Scoring as a First Filtering Method
B4.6.45 Protein Side-Chains Flexibility
B4.6.46 Importance of Modeling Side-Chain Mobility
B4.6.47 Determine the Optimum Combination of Side-Chains
B4.6.48 Combinatorial Explosion
B4.6.49 Side Chain Rotamer Libraries
B4.6.50 From Folding to Docking
B4.6.51 The Leach Algorithm
B4.6.52 Generation and Minimization of Complexes
B4.6.53 Other Optimization Methods
B4.6.54 Restricting Searches and Minimizations
B4.6.55 Identify Key Residues for the Interaction
B4.6.56 Restrict the Search to Exposed Side Chains
B4.6.57 Backbone and Side Chain Flexibility
B4.6.58 Conventional Methods not Adapted
B4.6.59 The Multiple Protein Structure (MPS) Approach
B4.6.60 Principle of the MPS Approach
B4.6.61 Sources of Multiple Protein Structures
B4.6.62 MPS: a Good Model for the Recognition Process
B4.6.63 How the MPS are Exploited?
B4.6.64 Successive and Independent Docking Treatments
B4.6.65 Acetylcholinesterase Example
B4.6.66 The United Protein Approach
B4.6.67 Key Concept of FlexE
B4.6.68 Remove Redundant Information
B4.6.69 FlexE: Incompatibility Graph
B4.6.70 FlexE: Search & Scoring
B4.6.71 The Average Grid Approach
B4.6.72 Single Grid Combining MPS Information
B4.6.73 Scoring Tolerance with MPS-based Grids
B4.6.74 Average Grid Approach vs. Soft Scoring
B4.6.75 Dynamic Pharmacophore-Based Approach
B4.6.76 Dynamic Pharmacophore Model for HIV-1 Integrase
B4.6.77 Domain Movements
B4.6.78 Example of Calmodulin Domain Movements
B4.6.79 Conventional Modeling Methods are not Suited
B4.6.80 Intrinsic Flexibility
B4.6.81 Hinge-Bent Movements
B4.6.82 Automated Methods for Hinge Detection
B4.6.83 Incorporating Hinge-Bent Movements in Docking
B4.6.84 Docking with Hinge-Bent Movements
B4.6.85 Ball-and-Socket Motions

B4.7. Uses of Docking in Research
B4.7.1 Computational Docking in Drug Discovery
B4.7.2 Virtual Screening
B4.7.3 Increasing HTS Hit Rates
B4.7.4 Confirm Choice of Prototype Structure
B4.7.5 Manual Design of a New Scaffold
B4.7.6 New Cores from a Database of Scaffolds
B4.7.7 De Novo Design of Spacers
B4.7.8 Modulating Protein-Protein Interactions
B4.7.9 Query for 3D Database Searching
B4.7.10 Creative Molecular Design Conditions
B4.7.11 Design of Combinatorial Libraries
B4.7.12 Understanding SAR
B4.7.13 Reducing Multiple Hypotheses to a Single One
B4.7.14 Series Optimization
B4.7.15 Explaining Incomprehensible Observations
B4.7.16 Identifying Incorrect Working Hypotheses
B4.7.17 Align Chemically Unrelated Molecules in 3D
B4.7.18 Improving the Solubility of a Ligand
B4.7.19 Understand the Intrinsic Limitations of a Scaffold
B4.7.20 Assessing the Potential of a Hit
B4.7.21 Elucidating Exact Mode of Action
B4.7.22 Assessing Multiple Alignment Hypotheses
B4.7.23 Molecular Mimicry
B4.7.24 Computational Validation of Hypotheses

B4.8. Docking Softwares

B4.8.1 Docking Programs
B4.8.2 Dock
B4.8.3 Autodock
B4.8.4 DockVision
B4.8.5 DockIt
B4.8.6 FlexX
B4.8.7 Ligin
B4.8.8 FT-Dock
B4.8.9 GOLD
B4.8.10 GRAMM
B4.8.11 Hex
B4.8.12 eHiTS
B4.8.13 LigandFit
B4.8.14 FRED
B4.8.15 Glide
B4.8.16 Which Software is Better?

B4.9. Future and Perspectives

B4.9.1 Limitations in Computational Docking
B4.9.2 Trade Off Between Efficiency and Accuracy
B4.9.3 Screening Large Chemical Libraries
B4.9.4 A Two Step Strategy
B4.9.5 High-throughput Docking Using Grid-Computing
B4.9.6 How Does it Work?
B4.9.7 Wide In Silico Docking On Malaria (WISDOM)
B4.9.8 Enrichment Factor
B4.9.9 Current Status of the Docking Problem
B4.9.10 The Docking Bottlenecks
B4.9.11 More Effective Scoring Functions
B4.9.12 Modeling the Solvent
B4.9.13 Validation of Scoring Functions
B4.9.14 Target Trainable Scoring Functions
B4.9.15 Database of Decoys
B4.9.16 Consensus Scoring
B4.9.17 The Molecular Flexibility Challenge
B4.9.18 Developing Better Models of Flexibility
B4.9.19 Importance of Visual Docking
B4.9.20 Requirement for Manual Docking
B4.9.21 Illustration of Manual Docking
B4.9.22 Manual Docking with Solid Models
B4.9.23 Virtual Reality Docking System
B4.9.24 Example of Docking using CAVE
B4.9.25 Synergy Between Interactive & Automated Docking
B4.9.26 Interactive Computer-Guided Docking
B4.9.27 Protein-Protein Docking Benchmarks
B4.9.28 The CAPRI Competition
B4.9.29 Six Weeks for Submitting Predicted Complexes
B4.9.30 Assessment of the Predictions
B4.9.31 A New CAPRI Scoring Category
B4.9.32 CAPRI History and Experience
B4.9.33 Perspectives

B4.10. CHAPTER QUIZZES (Available only in Teaching Package)
B4.10.1 Quiz 1
B4.10.2 Quiz 2
B4.10.3 Quiz 3
B4.10.4 Quiz 4
B4.10.5 Quiz 5
B4.10.6 Quiz 6
B4.10.7 Quiz 7
B4.10.8 Quiz 8
B4.10.9 Quiz 9
B4.10.10 Quiz 10
B4.10.11 Quiz 11
B4.10.12 Quiz 12
B4.10.13 Quiz 13
B4.10.14 Quiz 14
B4.10.15 Quiz 15
B4.10.16 Quiz 16
B4.10.17 Quiz 17
B4.10.18 Quiz 18
B4.10.19 Quiz 19
B4.10.20 Quiz 20
B4.10.21 Quiz 21
B4.10.22 Quiz 22
B4.10.23 Quiz 23
B4.10.24 Quiz 24
B4.10.25 Quiz 25
B4.10.26 Quiz 26
B4.10.27 Quiz 27
B4.10.28 Quiz 28
B4.10.29 Quiz 29
B4.10.30 Quiz 30
B4.10.31 Quiz 31
B4.10.32 Quiz 32
B4.10.33 Quiz 33
B4.10.34 Quiz 34
B4.10.35 Quiz 35
B4.10.36 Quiz 36
B4.10.37 Quiz 37
B4.10.38 Quiz 38
B4.10.39 Quiz 39
B4.10.40 Quiz 40
B4.10.41 Quiz 41
B4.10.42 Quiz 42
B4.10.43 Quiz 43
B4.10.44 Quiz 44
B4.10.45 Quiz 45
B4.10.46 Quiz 46
B4.10.47 Quiz 47
B4.10.48 Quiz 48
B4.10.49 Quiz 49
B4.10.50 Quiz 50
B4.10.51 Quiz 51
B4.10.52 Quiz 52
B4.10.53 Quiz 53
B4.10.54 Quiz 54
B4.10.55 Quiz 55
B4.10.56 Quiz 56
B4.10.57 Quiz 57
B4.10.58 Quiz 58
B4.10.59 Quiz 59
B4.10.60 Quiz 60
B4.10.61 Quiz 61
B4.10.62 Quiz 62
B4.10.63 Quiz 63
B4.10.64 Quiz 64
B4.10.65 Quiz 65
B4.10.66 Quiz 66
B4.10.67 Quiz 67
B4.10.68 Quiz 68
B4.10.69 Quiz 69
B4.10.70 Quiz 70
B4.10.71 Quiz 71
B4.10.72 Quiz 72
B4.10.73 Quiz 73
B4.10.74 Quiz 74
B4.10.75 Quiz 75
B4.10.76 Quiz 76
B4.10.77 Quiz 77
B4.10.78 Quiz 78
B4.10.79 Quiz 79
B4.10.80 Quiz 80
B4.10.81 Quiz 81
B4.10.82 Quiz 82
B4.10.83 Quiz 83
B4.10.84 Quiz 84
B4.10.85 Quiz 85
B4.10.86 Quiz 86
B4.10.87 Quiz 87
B4.10.88 Quiz 88
B4.10.89 Quiz 89
B4.10.90 Quiz 90
B4.10.91 Quiz 91
B4.10.92 Quiz 92
B4.10.93 Quiz 93
B4.10.94 Quiz 94
B4.10.95 Quiz 95
B4.10.96 Quiz 96
B4.10.97 Quiz 97
B4.10.98 Quiz 98
B4.10.99 Quiz 99
B4.10.100 Quiz 100
B4.10.101 Quiz 101
B4.10.102 Quiz 102
B4.10.103 Quiz 103
B4.10.104 Quiz 104
B4.10.105 Quiz 105
B4.10.106 Quiz 106
B4.10.107 Quiz 107
B4.10.108 Quiz 108
B4.10.109 Quiz 109
B4.10.110 Quiz 110
B4.10.111 Quiz 111
B4.10.112 Quiz 112
B4.10.113 Quiz 113
B4.10.114 Quiz 114
B4.10.115 Quiz 115
B4.10.116 Quiz 116
B4.10.117 Quiz 117
B4.10.118 Quiz 118
B4.10.119 Quiz 119
B4.10.120 Quiz 120
B4.10.121 Quiz 121
B4.10.122 Quiz 122
B4.10.123 Quiz 123
B4.10.124 Quiz 124
B4.10.125 Quiz 125
B4.10.126 Quiz 126
B4.10.127 Quiz 127
B4.10.128 Quiz 128
B4.10.129 Quiz 129
B6. MOLECULAR DYNAMICS

B6.1. Introduction
- B6.1.1 What is Molecular Dynamics?
- B6.1.2 Ergodicity Assumption
- B6.1.3 Historical Note
- B6.1.4 Four Types of Applications of MD Simulation
- B6.1.5 Macroscopic Behavior
- B6.1.6 MD Between Experiment and Theory
- B6.1.7 Refinement and Validation of MD
- B6.1.8 Access to Unavailable Data
- B6.1.9 MD Applied to Living Systems
- B6.1.10 Example 1: Relation between Structure and Function
- B6.1.11 Example 2: Relation between Structure and Function
- B6.1.12 Example 3: Relation between Structure and Function
- B6.1.13 Proteins are not Static
- B6.1.14 Thermal Fluctuations
- B6.1.15 Conformational Changes
- B6.1.16 MD as a Way to Study Molecular Motions
- B6.1.17 Mimicking the Way a Molecule Moves
- B6.1.18 Average Properties Derived from MD Trajectories
- B6.1.19 Calculating Molecular Properties of a System
- B6.1.20 Studying Thermodynamic Properties
- B6.1.21 Studying Kinetic Properties
- B6.1.22 Studying Conformational Changes

B6.2. Energy Calculations
- B6.2.1 Calculation of Forces & Energies
- B6.2.2 Two Families of MD Methods
- B6.2.3 The Quantum Mechanics Approach
- B6.2.4 Quantum Methods are Computationally Expensive
- B6.2.5 The Classical Mechanics Approach
- B6.2.6 Classical vs. Quantum Methods
- B6.2.7 Classical MD Simulates the Dynamics of the Nuclei
- B6.2.8 The Born-Oppenheimer Approximation
- B6.2.9 Force Field for Classical MD
- B6.2.10 General Force Field Equation
- B6.2.11 Stretching Term
- B6.2.12 Bending Term
- B6.2.13 Torsional Term
- B6.2.14 Van der Waals Term
B6.2.15 Electrostatic Term
B6.2.16 A Couple of Practical Remarks
B6.2.17 The Link between Forces and Potential Energies

B6.3. MD Algorithm

- B6.3.1 Newton's Equation of Motion
- B6.3.2 Prediction of Next Position
- B6.3.3 Integration Step
- B6.3.4 Molecular Dynamics Algorithm
- B6.3.5 Trajectories: List of Positions and Velocities
- B6.3.6 Atomic Positions at Time (t+\(\Delta t\))
- B6.3.7 Solving Newton's Equations
- B6.3.8 Numerical Integration with the Verlet Formula
- B6.3.9 Summary of the MD Algorithm

B6.4. Fundamental Issues

- B6.4.1 Time Step
- B6.4.2 Choice of Time Step
- B6.4.3 Time-Scale of Molecular Motions
- B6.4.4 Method for Increasing the Time Step: Constrained MD
- B6.4.5 Periodic Boundary Condition
- B6.4.6 Importance of Long Range Forces
- B6.4.7 The Distance Cutoff Concept
- B6.4.8 Problems with Cutoffs
- B6.4.9 Switching Functions
- B6.4.10 Choice of the Cutoff
- B6.4.11 Strategies to Incorporate the Solvent
- B6.4.12 Implicit Solvent Model
- B6.4.13 Explicit Solvent Molecules
- B6.4.14 The Ewald Summation Method

B6.5. MD Protocols

- B6.5.1 Typical Steps for MD Simulation
- B6.5.2 Define and Prepare the Molecular System
- B6.5.3 Preparing the Coordinates
- B6.5.4 Manual Assembly of a Complex Molecular System
- B6.5.5 Solvating the System
- B6.5.6 Addition of Counterions
- B6.5.7 Choose the MD Package & Force-Field
- B6.5.8 Extending the Parameterization of the Force Field
- B6.5.9 Configuration Parameters of the MD Simulation
- B6.5.10 Time-step
- B6.5.11 Length of the Simulation
- B6.5.12 Distance Cutoffs
- B6.5.13 Reassigning the List of Non-Bonded Atom Pairs
- B6.5.14 Initial Velocities
- B6.5.15 SHAKE Parameters
- B6.5.16 Preliminary Treatments: Minimization & Equilibration
- B6.5.17 Minimization of Initial Coordinates
- B6.5.18 Thermal Equilibration of the System
- B6.5.19 Maxwell-Boltzmann Equation
- B6.5.20 Molecular Dynamics Run
- B6.5.21 Conservation of the Total Energy
B6.5.22 Test Energy Fluctuation
B6.5.23 Possible Crash of the Program

B6.6. Analysis of the Results of the MD Simulation
 B6.6.1 Analysis of the Results
 B6.6.2 Thermodynamic Properties
 B6.6.3 Kinetic Properties
 B6.6.4 Visualization of Time Dependent Properties
 B6.6.5 Deriving Average Properties from the Trajectory
 B6.6.6 Average Energies
 B6.6.7 Specific Heat
 B6.6.8 Radius of Gyration
 B6.6.9 Local Motions
 B6.6.10 Interesting Motions
 B6.6.11 Movies

B6.7. Examples of MD Applications
 B6.7.1 First µs MD Simulation of Protein Folding
 B6.7.2 Protein-Folding Dynamics using Folding@Home
 B6.7.3 MD of the Complete Satellite Tobacco Mosaic Virus
 B6.7.4 How Does RNA Moves Along DNA?

B6.8. Using MD for Conformational Sampling
 B6.8.1 The Sampling Approach in Optimization Problems
 B6.8.2 MD as a Tool for Sampling the Space
 B6.8.3 Sampling to Find the Global Minimum
 B6.8.4 Conformational Analysis of a Small Molecule
 B6.8.5 Conformational Analysis of Biomolecules
 B6.8.6 Loop Conformation in Proteins
 B6.8.7 How Do Ligands and Receptors Bind Together?
 B6.8.8 Protein Folding Problem
 B6.8.9 Systematic and Random Sampling
 B6.8.10 Alternative Methods for Sampling
 B6.8.11 Monte Carlo Random Search
 B6.8.12 Monte Carlo Algorithm
 B6.8.13 Metropolis Monte Carlo Approach
 B6.8.14 Simulated Annealing
 B6.8.15 Diffusion Equation Methods
 B6.8.16 Replica Exchange MD Method

B6.9. MD for the Calculation of Binding Energies
 B6.9.1 In Silico Drug Design
 B6.9.2 FEP Approach for Calculating Binding Energies
 B6.9.3 FEP Thermodynamic Cycle
 B6.9.4 Exploiting the Thermodynamic Cycle
 B6.9.5 FEP: Computational Alchemy
 B6.9.6 Limitation of FEP Method
 B6.9.7 FEP Study: Example 1
 B6.9.8 FEP Study: Example 2

B6.10. MD Packages
 B6.10.1 Examples of Popular MD Packages
 B6.10.2 NAMD
 B6.10.3 VMD
B6.10.4 TINKER
B6.10.5 AMBER
B6.10.6 CHARMM
B6.10.7 GROMACS
B6.10.8 MOIL
B6.10.9 GROMOS

B6.11. Limitations and Perspectives
- B6.11.1 Limitations of MD
- B6.11.2 Error Introduced by Empirical Potentials?
- B6.11.3 Trade Off Between Efficiency and Accuracy
- B6.11.4 Supramolecular Systems
- B6.11.5 Long Range Forces as a Computational Bottleneck
- B6.11.6 Time and Size Limitations
- B6.11.7 Alternative Techniques for Long Time Dynamics
- B6.11.8 From Impossible to Feasible
- B6.11.9 Classical MD is not for Bond Breaking Mechanisms
- B6.11.10 Present and Future

B6.12. CHAPTER QUIZZES (Available only in Teaching Package)
- B6.12.1 Quiz 1
- B6.12.2 Quiz 2
- B6.12.3 Quiz 3
- B6.12.4 Quiz 4
- B6.12.5 Quiz 5
- B6.12.6 Quiz 6
- B6.12.7 Quiz 7
- B6.12.8 Quiz 8
- B6.12.9 Quiz 9
- B6.12.10 Quiz 10
- B6.12.11 Quiz 11
- B6.12.12 Quiz 12
- B6.12.13 Quiz 13
- B6.12.14 Quiz 14
- B6.12.15 Quiz 15
- B6.12.16 Quiz 16
- B6.12.17 Quiz 17
- B6.12.18 Quiz 18
- B6.12.19 Quiz 19
- B6.12.20 Quiz 20
- B6.12.21 Quiz 21
- B6.12.22 Quiz 22
- B6.12.23 Quiz 23
- B6.12.24 Quiz 24
- B6.12.25 Quiz 25
- B6.12.26 Quiz 26
- B6.12.27 Quiz 27
- B6.12.28 Quiz 28
- B6.12.29 Quiz 29
- B6.12.30 Quiz 30
- B6.12.31 Quiz 31
- B6.12.32 Quiz 32
- B6.12.33 Quiz 33
- B6.12.34 Quiz 34
- B6.12.35 Quiz 35
- B6.12.36 Quiz 36
- B6.12.37 Quiz 37
- B6.12.38 Quiz 38
- B6.12.39 Quiz 39
- B6.12.40 Quiz 40
- B6.12.41 Quiz 41
- B6.12.42 Quiz 42
- B6.12.43 Quiz 43
- B6.12.44 Quiz 44
- B6.12.45 Quiz 45
- B6.12.46 Quiz 46
- B6.12.47 Quiz 47
- B6.12.48 Quiz 48
- B6.12.49 Quiz 49
- B6.12.50 Quiz 50
- B6.12.51 Quiz 51
- B6.12.52 Quiz 52
- B6.12.53 Quiz 53
- B6.12.54 Quiz 54
- B6.12.55 Quiz 55
- B6.12.56 Quiz 56
- B6.12.57 Quiz 57
- B6.12.58 Quiz 58
- B6.12.59 Quiz 59
- B6.12.60 Quiz 60
- B6.12.61 Quiz 61
- B6.12.62 Quiz 62
- B6.12.63 Quiz 63
- B6.12.64 Quiz 64
- B6.12.65 Quiz 65
- B6.12.66 Quiz 66
- B6.12.67 Quiz 67
- B6.12.68 Quiz 68
- B6.12.69 Quiz 69
- B6.12.70 Quiz 70
- B6.12.71 Quiz 71
- B6.12.72 Quiz 72
- B6.12.73 Quiz 73
- B6.12.74 Quiz 74
- B6.12.75 Quiz 75
- B6.12.76 Quiz 76
- B6.12.77 Quiz 77
- B6.12.78 Quiz 78
- B6.12.79 Quiz 79
- B6.12.80 Quiz 80
- B6.12.81 Quiz 81
- B6.12.82 Quiz 82
- B6.12.83 Quiz 83
C. DRUG DISCOVERY

C2. PRINCIPLES OF RATIONAL DRUG DESIGN

C2.1. Rational Drug Design

C2.1.1 Drug Design Basis: Molecular Recognition
C2.1.2 Lock-and-Key Model
C2.1.3 Induced-Fit Model
C2.1.4 Rational Drug Design
C2.1.5 Rational Drug Design Process
C2.1.6 Receptor-Based Drug Design
C2.1.7 Pharmacophore-Based Drug Design

C2.2. Pharmacophore-Based Design

C2.2.1 Pharmacophore-Based Drug Design Approach
C2.2.2 Similarity Concepts and Molecular Mimicry
C2.2.3 Examples of Molecular Mimicry
C2.2.4 ATP
C2.2.5 Dopamine
C2.2.6 Histamine
C2.2.7 Estradiol
C2.2.8 Peptidomimetics
C2.2.9 Strengths of Pharmacophore-Based Drug Design

C2.3. Receptor-Based Design
- C2.3.1 Design by Direct Interaction with Receptor Sites
- C2.3.2 Exploiting the Receptor Recognition Concepts
- C2.3.3 Initial Data in Receptor-Based Drug Design
- C2.3.4 Strengths of Receptor Based Drug Design

C2.4. Integration in a Global Perspective
- C2.4.1 Typical Projects
- C2.4.2 Exploit the Two Methods, Independently
- C2.4.3 Synergy Between the Two Approaches
- C2.4.4 Good Binding Models, the Synergy Condition
- C2.4.5 Ideal Situation
- C2.4.6 Example 1
- C2.4.7 Example 2
- C2.4.8 Integration in a Global Perspective
- C2.4.9 Pharmacophore-Based Drug Design
- C2.4.10 Receptor-Based Drug Design
- C2.4.11 Integrated Global Approach

C2.5. Challenge of the Genomics Era
- C2.5.1 The Genomic Era
- C2.5.2 A New Challenge in Drug Design

C2.6. Typical Projects
- C2.6.1 Typical Pharmacophore-Based Project
- C2.6.2 Typical Receptor-Based Project
- C2.6.3 Typical Genomic Project

C2.7. Perspectives
- C2.7.1 Retrospective Analysis of Drug Discovery
- C2.7.2 Initial Skepticism Towards Rational Drug Design
- C2.7.3 Success Stories in Rational Drug Design
- C2.7.4 Future Perspectives

C2.8. CHAPTER QUIZZES (Available only in Teaching Package)
- C2.8.1 Quiz 1
- C2.8.2 Quiz 2
- C2.8.3 Quiz 3
- C2.8.4 Quiz 4
- C2.8.5 Quiz 5
- C2.8.6 Quiz 6
- C2.8.7 Quiz 7
- C2.8.8 Quiz 8
- C2.8.9 Quiz 9
- C2.8.10 Quiz 10
- C2.8.11 Quiz 11
- C2.8.12 Quiz 12
- C2.8.13 Quiz 13
- C2.8.14 Quiz 14
- C2.8.15 Quiz 15
C3. STRUCTURE ACTIVITY RELATIONSHIPS

C3.1. Introduction
- C3.1.1 Structure Activity Relationships (SAR)
- C3.1.2 Aim of SAR Analyses
- C3.1.3 Results of a SAR Analysis
- C3.1.4 Principle: Alteration of an Active Substance
- C3.1.5 Development: a Single Modification at a Time
- C3.1.6 Iterative Process
- C3.1.7 Chemical Modifications and Medicinal Chemist Tools
- C3.1.8 Chemistry is the Limiting Factor
- C3.1.9 Role of the Functional Groups in the Reference Structure

C3.2. Probing H-Bond Interactions
- C3.2.1 Principle for Probing Hydrogen Bond Interactions
- C3.2.2 Hydroxyl: Hypothetical H-Bond Interactions
- C3.2.3 Testing the Existence of H-Bond Interactions
- C3.2.4 Testing H-Bond Donor Capability of the Hydroxyl
- C3.2.5 Testing H-Bond Acceptor Capability of the Hydroxyl
- C3.2.6 Example 1: Pyrazolopyrimidines
- C3.2.7 Example 2: Benimidazoles
- C3.2.8 Example 3: Pyrrolopyrimidine
- C3.2.9 Example 4: Salicylanilides
- C3.2.10 Example 5: Isoflavones
- C3.2.11 Carbonyl: Hypothetical H-Bond Interactions
- C3.2.12 Testing the Existence of H-Bond Interactions
- C3.2.13 Example 1: Aminobenzophenones
- C3.2.14 Example 2: Thiazolidine-dione
- C3.2.15 Example 3: Pyrazolopyridines
- C3.2.16 Example 4: Naphthyl Ketones
- C3.2.17 Example 5: Cyclic Peptides
- C3.2.18 Amide
- C3.2.19 Testing the Existence of H-Bond Interactions
- C3.2.20 Testing H-Bond Acceptor Capability of the Carbonyl
- C3.2.21 Testing H-Bond Donor Capability of the Nitrogen
- C3.2.22 Example 1: Lactam Tricylic
- C3.2.23 Example 2: Pyrrolopyrimidinones
- C3.2.24 Primary Amines
- C3.2.25 Testing the Existence of H-Bond Interactions
- C3.2.26 Testing H-Bond Donor Capability of the Amines
- C3.2.27 Example 1: Imidazole Acetic Acids
- C3.2.28 Example 2: Salicylanilides
- C3.2.29 Secondary Amines
C3.2.30 Testing the Existence of H-Bond Interactions
C3.2.31 Testing H-Bond Donor Capability of the Amines
C3.2.32 Example 1: Imidazoquinoxalines
C3.2.33 Example 2: Anilinopyrimidines
C3.2.34 Example 3: Aminoquinazolines
C3.2.35 Tertiary Amines
C3.2.36 Testing the Existence of H-Bond Interactions
C3.2.37 Example Dihydropyridopyrimidones
C3.2.38 Aromatic Nitrogens
C3.2.39 Testing the Existence of H-Bond Interactions
C3.2.40 Testing H-Bond Donor Capability of the Amines
C3.2.41 Example 1: Imidazoles and Oxazoles
C3.2.42 Example 2: Pyrrolyl Ureas
C3.2.43 Example 3: Anilinoquinazolines
C3.2.44 Carboxylic Acids
C3.2.45 Testing the Existence of H-Bond Interactions
C3.2.46 Testing H-Bond Donor Capability of the COOH
C3.2.47 Example 1: Imidazole Carboxylic Acids
C3.2.48 Example 2: Pyrrolopyrimidines
C3.2.49 Example 3: Peptide-Based Structures
C3.2.50 Example 4: Aminoquinolones
C3.2.51 Ethers
C3.2.52 Testing the Existence of H-Bond Interactions
C3.2.53 Example 1: Epothilone A
C3.2.54 Example 2: Clofibrate
C3.2.55 Example 3: Piperidine Renin Inhibitors
C3.2.56 Cyano
C3.2.57 Testing the Existence of H-Bond Interactions
C3.2.58 Example 1: Anilinopyrimidines
C3.2.59 Example 2: Quinolinecarbonitriles
C3.2.60 Example 3: Pyrrolopyrimidines

C3.3. Probing Ionic Interactions
C3.3.1 Principle for Probing Ionic Interactions
C3.3.2 Carboxylates
C3.3.3 Amines

C3.4. Probing Hydrophobic Interactions
C3.4.1 Importance of Hydrophobic Interactions
C3.4.2 Principles for Probing Hydrophobic Interactions
C3.4.3 Alteration of Ring Size
C3.4.4 Example 1: Probing of a Hydrophobic Pocket
C3.4.5 Example 2 : Varying Ring Size
C3.4.6 Example 3: Probing a Hydrophobic Pocket
C3.4.7 Example 4: Fusion with Additional Rings
C3.4.8 Homologation of Alkyl Chains
C3.4.9 Example 1 of Homologation
C3.4.10 Example 2 of Homologation
C3.4.11 Example 3 of Homologation
C3.4.12 Exploring the Width of a Hydrophobic Pocket
C3.4.13 Example 1: Pyrazoles
C3.4.14 Example 2: Indolinones
C3.4.15 Example 3: Pyridopyrimidines
C3.4.16 Probing the Polarity of a Pocket
C3.4.17 Example: Dopamine Antagonists

■ C3.5. Probing Other Interactions
 ■ C3.5.1 Halogens
 ■ C3.5.2 Example 1: COX-2
 ■ C3.5.3 Example 2: MDM2
 ■ C3.5.4 Example 3: Glycine Antagonists
 ■ C3.5.5 Example 4: EGF-R Kinase Inhibitors
 ■ C3.5.6 Probing Aromatic Ring Positions
 ■ C3.5.7 KDR Inhibitors
 ■ C3.5.8 Anthranilamide - Factor Xa Inhibitors
 ■ C3.5.9 Tetrahydroisoquinoline - Serotonin 5-HT2A Ligands

■ C3.6. Modifications to Alter the Geometry of the Ligand
 ■ C3.6.1 Modification to Alter the Geometry of the Ligand
 ■ C3.6.2 The Amide Function
 ■ C3.6.3 SAR Example with an Amide Moiety
 ■ C3.6.4 Ortho Substitution of Aromatic Ring
 ■ C3.6.5 Cis-Trans Isomers
 ■ C3.6.6 Example 1: Cis and Trans Isomers
 ■ C3.6.7 Example 2: Cis and Trans Isomers
 ■ C3.6.8 Alter Stereochemistry
 ■ C3.6.9 Rigid Analogs: SAR Principle
 ■ C3.6.10 Example 1: GnRH Antagonists Rigidification
 ■ C3.6.11 Example 2: AChE Rigidification
 ■ C3.6.12 Example 3: p56-lck Inhibitors Rigidification
 ■ C3.6.13 Example 4: Angiotensin-II Receptor Antagonists
 ■ C3.6.14 Example 5: Dopaminergics Rigidification
 ■ C3.6.15 Examples 6: Pseudo Rings
 ■ C3.6.16 Anthranilamides
 ■ C3.6.17 Phenoxyphenyltriazoles
 ■ C3.6.18 Salicylanilides
 ■ C3.6.19 Example 7: Good and Bad Rigidification
 ■ C3.6.20 Example 8: Rigidification of a Flexible Molecule
 ■ C3.6.21 Flexible Analogs: SAR Principle
 ■ C3.6.22 Ring Suppression: Doxepin
 ■ C3.6.23 Alteration of Interatomic Distances
 ■ C3.6.24 Alteration of the Stereochemistry of the Ligand

■ C3.7. Complexity of SAR Analyses
 ■ C3.7.1 Complexity of the Structures Concerned
 ■ C3.7.2 Observations with no Explanations
 ■ C3.7.3 Local Changes and Global Consequences
 ■ C3.7.4 Small Modification that Substantially Alters the Geometry
 ■ C3.7.5 Small Modification that Interferes with Other Interactions
 ■ C3.7.6 Modification that Alters the Binding Orientation
 ■ C3.7.7 Change that Alters a Characteristic of the Substance
 ■ C3.7.8 pKa
 ■ C3.7.9 LogP
 ■ C3.7.10 Non Additivity of Biological Effects
 ■ C3.7.11 Additivity in Steroids: Norethisterone
C3.7.12 Furanyl Example: Non-Additivity
C3.7.13 Phenoxypyrimidines: Non Additivity
C3.7.14 Being Trapped with Poor Biological Activities
C3.7.15 The Dioxobenzothiazole Scaffold
C3.7.16 The Combinatorial Era

C3.8. Example of Good Exploitation of SAR Complexity
C3.8.1 The Banyu Story with the Urea Structure
C3.8.2 Importance of the Entire Urea Moiety
C3.8.3 Bioactive Conformation?
C3.8.4 Design of Compounds with a Cis Conformation
C3.8.5 Good Exploitation of the SAR Analyses

C3.9. CHAPTER QUIZZES (Available only in Teaching Package)
C3.9.1 Quiz 1
C3.9.2 Quiz 2
C3.9.3 Quiz 3
C3.9.4 Quiz 4
C3.9.5 Quiz 5
C3.9.6 Quiz 6
C3.9.7 Quiz 7
C3.9.8 Quiz 8
C3.9.9 Quiz 9
C3.9.10 Quiz 10
C3.9.11 Quiz 11
C3.9.12 Quiz 12
C3.9.13 Quiz 13
C3.9.14 Quiz 14
C3.9.15 Quiz 15
C3.9.16 Quiz 16
C3.9.17 Quiz 17
C3.9.18 Quiz 18
C3.9.19 Quiz 19

C4. BIOISOSTERISM

C4.1. Introduction
C4.1.1 What is Bioisosterism?
C4.1.2 History of the Concept of Bioisosterism
C4.1.3 Langmuir (1919): Comolecules and Isosteres
C4.1.4 Grimm (1925)
C4.1.5 Erlenmeyer (1932)
C4.1.6 Friedman (1951): Concept of Bioisosteres
C4.1.7 Thornber (1979)
C4.1.8 Burger (1991)
C4.1.9 Cheminformatics Era (1993)
C4.1.10 Remark on Stereochemical Aspects

C4.2. Typical Isosteres
C4.2.1 Classification of Typical Isosteres
C4.2.2 Monovalent Atoms or Groups
C4.2.3 Divalent Isosteres
C4.2.4 Trivalent Atoms or Groups
C4.2.5 Tetrasubstituted Atoms
C4.2.6 Ring Equivalents

C4.3. Medicinal Chemistry Use
- C4.3.1 A Simple Concept for Many Applications
- C4.3.2 Adapt Chemical Structures to Feasible Syntheses
- C4.3.3 Change the Type of Biological Activity
- C4.3.4 Example 1: Tricyclic Structures
- C4.3.5 Example 2: Angiotensin-II Receptor Ligands
- C4.3.6 Example 3: Steroid Analogs
- C4.3.7 Achieve Patentability
- C4.3.8 Mimic an Endogenous Ligand
- C4.3.9 Improve Potency
- C4.3.10 Improve Selectivity
- C4.3.11 Reduce Side Effects
- C4.3.12 Reduce Toxicity
- C4.3.13 Improve Bioavailability
- C4.3.14 Exploit Metabolism
- C4.3.15 Modify pKa
- C4.3.16 Increase Chemical Stability
- C4.3.17 Combinatorial Chemistry

C4.4. Examples of Natural Bioisosteres
- C4.4.1 Bioisosteres in Nature
- C4.4.2 Aminoacids
- C4.4.3 Nucleotides
- C4.4.4 Sugars
- C4.4.5 Lipids
- C4.4.6 Steroid Hormones
- C4.4.7 Carbohydrates
- C4.4.8 Catecholamines
- C4.4.9 Penicillins and Cephalosporins

C4.5. Dictionary of Bioisosteres
- C4.5.1 Dictionary of Bioisosterie Replacements
- C4.5.2 Allyl
- C4.5.3 Amide
- C4.5.4 Amino-Acids
- C4.5.5 Azomethine
- C4.5.6 Benzene
- C4.5.7 Carbonyl
- C4.5.8 Carboxylic Acid
- C4.5.9 Catechol
- C4.5.10 Ester
- C4.5.11 Halogen
- C4.5.12 Hydrogen
- C4.5.13 Hydroxyl
- C4.5.14 Indole
- C4.5.15 Isopropyl
- C4.5.16 Naphthalene
- C4.5.17 Peptide Surrogates
- C4.5.18 Phenol
- C4.5.19 Pyridine
C4.6. Examples of Bioisosteric Transformations

- C4.6.1 Four Types of Bioisosteric Transformations
- C4.6.2 Ring-to-Ring Transformations
- C4.6.3 Example 1
- C4.6.4 Example 2
- C4.6.5 Example 3
- C4.6.6 Chain-to-Ring Transformations
- C4.6.7 Example 1
- C4.6.8 Example 2
- C4.6.9 Example 3
- C4.6.10 Ring-to-Chain Transformations
- C4.6.11 Example 1
- C4.6.12 Example 2
- C4.6.13 Example 3
- C4.6.14 Chain-to-Chain Transformations
- C4.6.15 Example 1
- C4.6.16 Example 2
- C4.6.17 Example 3

C4.7. Commercial Bioisosteric Drugs: Examples

- C4.7.1 Angiotensin Receptor Blockers (ARBs)
- C4.7.2 COX-2 Inhibitors
- C4.7.3 Anti-Inflammatory NSAIDs
- C4.7.4 Antiarrhythmic Beta-Adrenergics
- C4.7.5 Neuroleptics
- C4.7.6 Anti-Ulcers
- C4.7.7 Male Erectile Dysfunction Drugs
- C4.7.8 Benzodiazepines
- C4.7.9 Antibacterial Sulfonamides
- C4.7.10 Beta-Lactam Antibiotics
- C4.7.11 Local Anesthetics
- C4.7.12 Glucocorticoid Steroids
- C4.7.13 Statin Drugs

C4.8. Patent Issues with Bioisosterism

- C4.8.1 Limits of Patent Infringements on Structures?
- C4.8.2 The Viagra-levitra Case
- C4.8.3 The Diazepam-Clobazam Example
- C4.8.4 Patent Issues with Chiral Enantiomers
- C4.8.5 Patentable Drugs by Bioisosterism

C4.9. Programs and Databases on Bioisosterism

- C4.9.1 Computerized Systems
- C4.9.2 EMIL Program
- C4.9.3 BIOISOSTER Program and BIOSTER Database
- C4.9.4 The BIOISOSTER Program
- C4.9.5 Bioisosteric Morphing of the Query
C4.9.6 The Accelrys BIOSTER Database
C4.9.7 Example of BIOSTER Database Content
C4.9.8 BROOD Program
C4.9.9 Brood Program for Bradykinin Antagonists
C4.9.10 Organon IBIS Program
C4.9.11 Novartis Program for Ring Bioisosteres
C4.9.12 GlaxoSmithKline Program for Ring Replacements
C4.9.13 COSMOsim Program for Bioisosteric Similarity
C4.9.14 Cheminformatics Software
C4.9.15 Daylight: MERLIN Program
C4.9.16 Tripos: SYBYL Platform
C4.9.17 MDL: ISENTRIS Program
C4.9.18 MDL: DiscoveryGate Program
C4.9.19 CAS: SciFinder Program

C4.10. Review Articles and Books
C4.10.1 Review Articles on Bioisosterism
C4.10.2 Books on Bioisosterism

C4.11. Limitations and the Future
C4.11.1 The Receptor is the Ultimate Decider
C4.11.2 The Multidimensional Nature of Bioisosterism
C4.11.3 Shape
C4.11.4 Lipophilicity
C4.11.5 Electronic Distribution
C4.11.6 Hydrogen-Bond Capacity
C4.11.7 Can Bioisosterism be Quantified?
C4.11.8 The Cheminformatics Era
C4.11.9 Docking can be used to Generate Bioisosteres
C4.11.10 Strategic and Financial Considerations
C4.11.11 Examples of Success and Failures

C4.12. CHAPTER QUIZZES (Available only in Teaching Package)
C4.12.1 Quiz 1
C4.12.2 Quiz 2
C4.12.3 Quiz 3
C4.12.4 Quiz 4
C4.12.5 Quiz 5
C4.12.6 Quiz 6
C4.12.7 Quiz 7
C4.12.8 Quiz 8
C4.12.9 Quiz 9
C4.12.10 Quiz 10
C4.12.11 Quiz 11
C4.12.12 Quiz 12
C4.12.13 Quiz 13
C4.12.14 Quiz 14
C4.12.15 Quiz 15
C4.12.16 Quiz 16
C4.12.17 Quiz 17
C4.12.18 Quiz 18
C4.12.19 Quiz 19
C4.12.20 Quiz 20
C5. SUCCESS STORIES IN DRUG DISCOVERY

- C5.1. Captopril
 - C5.1.1 Captopril
 - C5.1.2 Captopril Target - ACE
 - C5.1.3 Starting Point: Venom Causes Drop in Blood Pressure
 - C5.1.4 Snake Venom Acts on the ACE Cascade
 - C5.1.5 The Captopril Story
 - C5.1.6 Developing an Assay for ACE
 - C5.1.7 Isolating and Purifying the Venom Peptides
 - C5.1.8 Encouraging Clinical Trial Results
 - C5.1.9 Project Virtually Abandoned at Squibb
 - C5.1.10 Back to the Project
 - C5.1.11 Applying the Concepts to ACE
 - C5.1.12 The Basis of ACE and CPA Similarity
 - C5.1.13 X-ray Structure of CPA
 - C5.1.14 Modeling the Active Site of ACE
 - C5.1.15 Design of a Novel ACE Inhibitor
 - C5.1.16 The Phe-Ala-Pro Pharmacophore
 - C5.1.17 Finding a Lead Compound
 - C5.1.18 The Discovery of Captopril
 - C5.1.19 The Captopril Project Timeline
 - C5.1.20 What Made the Success of the Project Possible?
 - C5.1.21 Structure-Based Component
 - C5.1.22 Ligand-Based Component
 - C5.1.23 Following the Discovery
 - C5.1.24 Recent Structure of Captopril-ACE Complex
C5.2. Aliskiren

- C5.2.1 Aliskiren
- C5.2.2 Aliskiren Target - Renin
- C5.2.3 Starting Point
- C5.2.4 The Aliskiren Story
- C5.2.5 The First Generation of Renin Inhibitors
- C5.2.6 The Second Generation of Renin Inhibitors
- C5.2.7 Peptidomimetic Approach was Unsuccessful
- C5.2.8 The Need for a New Non-Peptidic Scaffold
- C5.2.9 Novartis's New Rational Approach
- C5.2.10 3D Model of the Enzyme
- C5.2.11 Predicting the Bioactive Conformation of CGP38560
- C5.2.12 The Design Strategy
- C5.2.13 Finding a Feasible Scaffold
- C5.2.14 Criteria for Good Candidate Molecules
- C5.2.15 The Parallel Design of Non-Peptide Renin Inhibitors
- C5.2.16 The THQ Series
- C5.2.17 Validation of the Design Strategy
- C5.2.18 The Phenoxy Series
- C5.2.19 Optimization of the Phenoxy Lead
- C5.2.20 The Indole Series
- C5.2.21 The Salicylamide Series
- C5.2.22 A Docking Experiment
- C5.2.23 Design of the Salicylamide Molecule
- C5.2.24 Transferrable SAR’s
- C5.2.25 Example of Transferrable SAR’s
- C5.2.26 Four Unrelated Lead Compounds
- C5.2.27 Browser of the Novartis Renin Inhibitor Leads
- C5.2.28 From Initial Lead to Aliskiren
- C5.2.29 The Aliskiren Project Timeline
- C5.2.30 What Made the Success of the Project Possible?
- C5.2.31 The Incorporation of Modeling
- C5.2.32 Modeling - The Key to Aliskiren's Success
- C5.2.33 Historical Document
- C5.2.34 Good Teamwork
- C5.2.35 Following the Discovery
- C5.2.36 X-rays of Complex with CGP38560
- C5.2.37 X-ray Determination of Lead Inhibitors
- C5.2.38 The Indole X-ray
- C5.2.39 The S3sp sub-Pocket
- C5.2.40 Other Work on Drugs in this Class

C6. EXAMPLES OF SCAFFOLD MORPHING

- C6.1. Introduction
 - C6.1.1 Analog Design in Drug Discovery
 - C6.1.2 Scaffold Morphing
 - C6.1.3 Methods in Scaffold Morphing
 - C6.1.4 Morphing by Elementary Modifications
C6.1.5 Morphing: From Real to Pseudo-Ring
C6.1.6 Morphing: From Pseudo to Real Ring
C6.1.7 Morphing by Bioisosteric Replacements
C6.1.8 Drug Design Guided by Modeling Considerations
C6.1.9 Case Studies in Ring Morphing

C6.2. Morphing by Elementary Modifications
C6.2.1 EGF-R Protein Kinase Inhibitor Scaffold Morphing
C6.2.2 Structure-Based Interpretation of Good Morphing

C6.3. Morphing: From Real to Pseudo-Ring
C6.3.1 Morphing by Breaking a Bond in a Ring
C6.3.2 Breaking a Bond in a Ring Creates Steric Repulsions
C6.3.3 Ring Morphing with Pseudo Ring Concept
C6.3.4 Pyrimidin-4-yl-ureas
C6.3.5 PD-166285 Reference and Novartis Design
C6.3.6 A Search in the Cambridge Structural Database
C6.3.7 Ab-Initio Calculations
C6.3.8 Synthesis of the Prototype Molecule
C6.3.9 Biological Assays for Compound 1
C6.3.10 Docking of Compound 1 in c-Abl
C6.3.11 Correlation of the Activities with Size of Gatekeeper
C6.3.12 Alignment of Pyrimidin-4-yl urea and PD-166285
C6.3.13 P&G Discovered Independently the Same Molecule
C6.3.14 Optimization Towards Lck Kinase Inhibition
C6.3.15 Summary
C6.3.16 Anthranilamide Scaffold
C6.3.17 Structural Determinants of Anilinophtalazine Activity?
C6.3.18 Conformational Analyses
C6.3.19 Bidentate Binding Mode Unlikely to Occur
C6.3.20 Role of the Nitrogen Phtalazine Atoms
C6.3.21 Database Searching
C6.3.22 3D Electrostatic Potential
C6.3.23 Synthesis of the Exact Anthranilamide Mimetic
C6.3.24 Biological Tests
C6.3.25 3D Overlay of Mimic Structures
C6.3.26 Determinants for Anilinophtalazine KDR/Flt-1 Activities
C6.3.27 Summary
C6.3.28 Phenoxyphenyltriazoles
C6.3.29 Requirements for Binding to the BZD Receptor
C6.3.30 Design of an Estazolam Mimic
C6.3.31 Conformational Analyses and Overlay with Diazepam
C6.3.32 Chemical Synthesis of the Mimics
C6.3.33 Confirmation of the Design Hypothesis
C6.3.34 Summary
C6.3.35 Salicylanilides
C6.3.36 Genistein Structure and Alignment with Quinazoline 1
C6.3.37 3D Design of a Salicylanilide Scaffold
C6.3.38 Possible Intramolecular H-Bonds in Salicylanilides
C6.3.39 Synthesis of the Molecules
C6.3.40 Biological Assays
C6.3.41 Validity of the Hypotheses
C6.4. Morphing: From Pseudo to Real Ring

C6.4.1 Principle of Replacing a Pseudo-Ring by a Real one
C6.4.2 Salicylamide Mimics
C6.4.3 SAR of Salicylamide 1
C6.4.4 Removing the Hydroxyl or the Carbonyl
C6.4.5 Analyzing if Ortho Electron Lone-Pair is Sufficient
C6.4.6 Potent Inhibition at Ki at Different pH
C6.4.7 Pseudo-Ring of 1 Binds as a Whole Unit
C6.4.8 Design of Quinazoline Mimic
C6.4.9 3D Alignment of Salicylamide 1 and Quinazoline 2
C6.4.10 Conclusion
C6.4.11 Summary
C6.4.12 Pro-Leu-Gly-NH2 Peptide
C6.4.13 The γ-Lactam Analog of Pro-Leu-Gly-NH2
C6.4.14 Design of Imidazolidinone and Diketopiperazine
C6.4.15 Biological Tests
C6.4.16 3D Alignment of Pro-Leu-Gly-NH2 and Mimics
C6.4.17 Summary
C6.4.18 Remoxipride Mimic
C6.4.19 Bioactive Conformation of Desmethylremoxipride
C6.4.20 Design of Rigid Analog
C6.4.21 Chemical Synthesis
C6.4.22 Biological Tests
C6.4.23 3D Alignments
C6.4.24 Summary
C6.4.25 Rimonabant Mimic
C6.4.26 Conformational Analysis of Rimonabant
C6.4.27 Design of Rigid Analog
C6.4.28 Chemical Synthesis
C6.4.29 Biological Tests
C6.4.30 3D Alignment of Rimonabant and Mimic
C6.4.31 Summary

C6.5. Morphing by Bioisosteric Replacements

C6.5.1 Bioisosterism
C6.5.2 Bradykinin Antagonists
C6.5.3 The Problem
C6.5.4 The Stepwise Discovery of Cyclopropylamide
C6.5.5 Retaining the two N-H groups
C6.5.6 Mimicking the Nitrogen Pyridine Atom by a Carbonyl
C6.5.7 Conformational Considerations
C6.5.8 First Molecules Synthesized
C6.5.9 Restoring Lipophilic Interactions
C6.5.10 Reducing Ring Size
C6.5.11 The Best Replacement
C6.5.12 Additional Factors in Cyclopropyl Replacement
C6.5.13 Torsion Angle N-C-C-N
C6.5.14 Smaller Rings have Increasing π Character
C6.5.15 Ring Strain and Geometry of Cyclopropyl
C6.5.16 Bulkiness of the Hydrophobic Ring
D. STRUCTURE-BASED DRUG DESIGN

D1. STRUCTURE-BASED DRUG DESIGN: ANALYSIS

D1.1. Introduction
- D1.1.1 Receptor-Based Drug Design
- D1.1.2 Macromolecular Targets
- D1.1.3 Operational Strategy: Docking

D1.2. Analytical Process
- D1.2.1 The Analytical Process
- D1.2.2 Data Collection
- D1.2.3 Analysis
- D1.2.4 Design Phase

D1.3. Principles of Analysis
- D1.3.1 Analysis of the Morphology of the Active Site
- D1.3.2 Complexes with Ligands
- D1.3.3 Forces That Contribute to the Binding
- D1.3.4 The Molecular Recognition Process
- D1.3.5 Electrostatic
- D1.3.6 Hydrogen Bonding
- D1.3.7 Hydrophobic
- D1.3.8 Hydrophobic Interactions
- D1.3.9 Consider Hydrophobic Interactions
- D1.3.10 Elementary Hydrophobic Interactions
- D1.3.11 Example of Hydrophobic Binding
- D1.3.12 Strengthening Hydrophobic Interactions
- D1.3.13 Hydrogen Bond Features
- D1.3.14 Proteins Capabilities in Hydrogen Bonding
- D1.3.15 Consider Hydrogen Bond Formations
- D1.3.16 Elementary Hydrogen Bond Interactions
- D1.3.17 Example of the Hydrogen Bond Binding
- D1.3.18 Electrostatic Interactions
- D1.3.19 Elementary Electrostatic Interactions
- D1.3.20 Strength of Electrostatic Interactions
- D1.3.21 Example of Electrostatic Interactions

D1.4. Example of Tight Interactions
- D1.4.1 An Example of a Tight Ligand-Receptor Interaction
- D1.4.2 The X-ray Structure of the Biotin/Streptavidin
- D1.4.3 The Binding Mode of Biotin with Streptavidin
D1.5. Receptor & Ligand Flexibility
 - D1.5.1 Flexibility of the Receptor
 - D1.5.2 Flexibility of The Ligand
 - D1.5.3 Entropic Effects

D1.6. Role of the Solvent
 - D1.6.1 Solvation and Desolvation
 - D1.6.2 The Role of the Solvent
 - D1.6.3 Relay with Water Molecules

D1.7. Prediction of Binding Modes
 - D1.7.1 Binding Modes Predicted by Analogy
 - D1.7.2 Inversion of Binding Modes
 - D1.7.3 Inverted Binding Mode of Olomoucine
 - D1.7.4 Inverted Binding Mode of Methotrexate
 - D1.7.5 Binding Mode Predicted from SAR

D1.8. Example of Binding Prediction
 - D1.8.1 Pyrrolo-Pyrimidine & Quinazoline EGF-R Inhibitors
 - D1.8.2 Novartis and Parke-Davis Opposite Binding Models
 - D1.8.3 Controversy: Novartis & Parke-Davis Binding Modes
 - D1.8.4 The Rational Drug Design Strategies
 - D1.8.5 Binding Mode of ATP and Staurosporine
 - D1.8.6 From Staurosporine to Pyrrolo-pyrimidine
 - D1.8.7 The Novartis Binding Mode of Pyrrolo-pyrimidine
 - D1.8.8 Parke-Davis Analyses the Quinazoline Scaffold
 - D1.8.9 Parke-Davis Model of the Quinazoline Analog
 - D1.8.10 Parke-Davis Model Consistent with Observed SAR
 - D1.8.11 The Controversy and the Correct Solution
 - D1.8.12 Novartis-Like Binding Mode
 - D1.8.13 Parke-Davis-Like Binding Mode
 - D1.8.14 Conclusion

D1.9. Example of 3D SAR Analyses
 - D1.9.1 Therapeutic Utility of EGF-R Kinase Inhibitors
 - D1.9.2 Amino-4 Quinazoline Inhibitors: Iressa and Tarceva
 - D1.9.3 Analysis of Tarceva Binding to the EGF-R Kinase
 - D1.9.4 SAR of the Quinazoline Scaffold
 - D1.9.5 Analysis of a Surprising Observation

D1.10. Methods for Analyzing Binding
 - D1.10.1 Analyzing Ligand-Receptor Binding
 - D1.10.2 Ligand-Binding Predictions
 - D1.10.3 Visual Analyses
 - D1.10.4 Docking Analyses
 - D1.10.5 Calculation of Binding Energies
 - D1.10.6 Free Energy Perturbation Techniques
 - D1.10.7 Energies from Force Field Calculations
 - D1.10.8 Energies from Scoring Functions
 - D1.10.9 Limitations of Scoring Functions
 - D1.10.10 Calculating Desolvation Energies

D1.11. Conclusion
 - D1.11.1 Conclusion
D1.12. CHAPTEỘR QUIZZES (Available only in Teaching Package)
- D1.12.1 Quiz 1
- D1.12.2 Quiz 2
- D1.12.3 Quiz 3
- D1.12.4 Quiz 4
- D1.12.5 Quiz 5
- D1.12.6 Quiz 6
- D1.12.7 Quiz 7
- D1.12.8 Quiz 8
- D1.12.9 Quiz 9
- D1.12.10 Quiz 10
- D1.12.11 Quiz 11
- D1.12.12 Quiz 12
- D1.12.13 Quiz 13
- D1.12.14 Quiz 14
- D1.12.15 Quiz 15
- D1.12.16 Quiz 16
- D1.12.17 Quiz 17
- D1.12.18 Quiz 18
- D1.12.19 Quiz 19
- D1.12.20 Quiz 20
- D1.12.21 Quiz 21
- D1.12.22 Quiz 22
- D1.12.23 Quiz 23
- D1.12.24 Quiz 24
- D1.12.25 Quiz 25
- D1.12.26 Quiz 26
- D1.12.27 Quiz 27
- D1.12.28 Quiz 28
- D1.12.29 Quiz 29
- D1.12.30 Quiz 30
- D1.12.31 Quiz 31
- D1.12.32 Quiz 32
- D1.12.33 Quiz 33
- D1.12.34 Quiz 34
- D1.12.35 Quiz 35
- D1.12.36 Quiz 36
- D1.12.37 Quiz 37
- D1.12.38 Quiz 38
- D1.12.39 Quiz 39
- D1.12.40 Quiz 40
- D1.12.41 Quiz 41
- D1.12.42 Quiz 42
- D1.12.43 Quiz 43
- D1.12.44 Quiz 44
- D1.12.45 Quiz 45
- D1.12.46 Quiz 46
- D1.12.47 Quiz 47
- D1.12.48 Quiz 48
- D1.12.49 Quiz 49
- D1.12.50 Quiz 50
D2. STRUCTURE-BASED DRUG DESIGN: DESIGN

D2.1. Introduction
- D2.1.1 Design of Drug Candidates: An Iterative Process
- D2.1.2 Steps in Structure-Based Drug Design
- D2.1.3 Small Changes Can Produce Huge Effects
- D2.1.4 p38 Wild
- D2.1.5 p38 Mutant
- D2.1.6 ERK-2 Wild
- D2.1.7 ERK-2 Mutant
- D2.1.8 Increasing Biological Activity
- D2.1.9 Beginning the Design Phase
- D2.1.10 A Simple Example of Design
- D2.1.11 Definition of Docking
- D2.1.12 Docking Treatments

D2.2. Eight Golden Rules
- D2.2.1 Eight Golden Rules in Receptor-Based Ligand Design
- D2.2.2 Rule 1: Coordinate to Key Anchoring Sites
- D2.2.3 Rule 2: Exploit Hydrophobic Interactions
- D2.2.4 Rule 3: Exploit Hydrogen Bonding Capabilities
- D2.2.5 Hydrogen Bonds with Backbone Atoms
- D2.2.6 Hydrogen Bonds with Residue Atoms
- D2.2.7 Rule 4: Exploit Electrostatic Interactions
- D2.2.8 Rule 5: Favor Bioactive Form & Avoid Energy Strain
- D2.2.9 Rule 6: Optimize VDW Contacts and Avoid Bumps
- D2.2.10 Rule 7: Structural Water Molecules and Solvation
- D2.2.11 Rule 8: Consider Entropic Effect
- D2.2.12 Gaining Binding by Reduction of Entropy

D2.3. The Four Design Methods
- D2.3.1 The Four Design Methods

D2.4. Analog Design
- D2.4.1 Principles of Analog Design
- D2.4.2 Example of Analog Design

D2.5. Database Searching
- D2.5.1 3D Database Searching
- D2.5.2 Advantages of Database Searching
- D2.5.3 Problems of Conformational Complexity
- D2.5.4 Example of Database Searching
- D2.5.5 Limitations in Data Base Approaches
- D2.5.6 Databases of Molecules in 3D
- D2.5.7 The Main Purpose of a 3D-Database Search

D2.6. De-Novo Design
- D2.6.1 Automated Construction Approaches
- D2.6.2 Molecule Generated by an Automated Method
D2.7. Manual Design
- D2.7.1 Manual Design
- D2.7.2 Importance of Visualization
- D2.7.3 Tools in Manual Design
- D2.7.4 Fully Exploiting the Fruits of the Analyses

D2.8. Another Iteration
- D2.8.1 Another Round of Analysis & Design

D2.9. A Success Story
- D2.9.1 Example Of Successful Structure-Based Design
- D2.9.2 Mechanism of Action of the HIV-1 Protease
- D2.9.3 The Crystallographic Structure of the HIV-1 Protease
- D2.9.4 Transition State Concept for the Design of Inhibitors
- D2.9.5 Topography of the Active Site of the Enzyme
- D2.9.6 The MVT-101 Inhibitor
- D2.9.7 Crystallographic Resolution of the HIV-1 Protease
- D2.9.8 X-ray of the Complex of MVT-101 with the Enzyme
- D2.9.9 Design of Peptide-Like Structures
- D2.9.10 X-ray Structure of the A-77003 Complex
- D2.9.11 A Drug Design Solution Using Database Searching
- D2.9.12 The Terphenyl Hit
- D2.9.13 In Depth Analysis of the Hit
- D2.9.14 The Design of Cyclic Ureas
- D2.9.15 The Crystallographic Structure of XK-263 Complex
- D2.9.16 Lessons From HIV-1 Protease Inhibition

D2.10. Conclusion
- D2.10.1 Conclusion

D2.11. CHAPTER QUIZZES (Available only in Teaching Package)
- D2.11.1 Quiz 1
- D2.11.2 Quiz 2
- D2.11.3 Quiz 3
- D2.11.4 Quiz 4
- D2.11.5 Quiz 5
- D2.11.6 Quiz 6
- D2.11.7 Quiz 7
- D2.11.8 Quiz 8
- D2.11.9 Quiz 9
- D2.11.10 Quiz 10
- D2.11.11 Quiz 11
- D2.11.12 Quiz 12
- D2.11.13 Quiz 13
- D2.11.14 Quiz 14
- D2.11.15 Quiz 15
- D2.11.16 Quiz 16
- D2.11.17 Quiz 17
- D2.11.18 Quiz 18
- D2.11.19 Quiz 19
- D2.11.20 Quiz 20
- D2.11.21 Quiz 21
- D2.11.22 Quiz 22
D3. STRUCTURE-BASED DRUG DESIGN: EXAMPLES

- D3.1. Inhibitors of PNP
 - D3.1.1 The Purine Nucleoside Phosphorylase Phosphate
 - D3.1.2 Therapeutic Utility of PNP Inhibitors
 - D3.1.3 The Complex of Guanine with PNP
 - D3.1.4 Analysis of the Active Site of PNP
 - D3.1.5 Strategy for the Design of PNP Inhibitors
 - D3.1.6 Design of 9-Deazaguanine Derivatives
 - D3.1.7 Binding of 9-Deaza-Guanine Candidate
 - D3.1.8 Browser of PNP Inhibitors

- D3.2. Intercalating Antibiotics
 - D3.2.1 Therapeutic Utility of Intercalating Agents
 - D3.2.2 Daunorubicin a Potent Anthracycline Antibiotic
 - D3.2.3 Complex of Daunorubicin with a Hexanucleotide
 - D3.2.4 Analysis of the Binding of Daunorubicin
 - D3.2.5 Design of Novel Intercalating Agents
D3.3. Thymidylate Synthase Inhibitors
- D3.3.1 The Thymidylate Synthase Enzyme
- D3.3.2 Two Possible Strategies for Inhibiting TS
- D3.3.3 Inhibition by Binding to the Substrate Site
- D3.3.4 Inhibition by Binding to Cofactor Site
- D3.3.5 Complex of CB3717 with Thymidylate Synthase
- D3.3.6 Analysis of the Binding of CB3717
- D3.3.7 Design of a New TS Inhibitor

D3.4. Inhibitors of Phospholipase A-2
- D3.4.1 Phospholipase A2
- D3.4.2 PLA2 Transition State Analogues
- D3.4.3 Complex of an Inhibitor with PLA2
- D3.4.4 Analysis of the Binding of the Inhibitor
- D3.4.5 Design of a New Class of PLA2 Inhibitors
- D3.4.6 Binding of Acenaphtene with PLA2

D3.5. Thrombin Inhibitors
- D3.5.1 Therapeutic Utility of Thrombin Inhibitors
- D3.5.2 Examples of Thrombin Inhibitors
- D3.5.3 The Catalytic Mechanism of Thrombin
- D3.5.4 The Complex of Thrombin with NAPAP
- D3.5.5 Analysis of the NAPAP-Thrombin Complex
- D3.5.6 The Design of a New Thrombin Inhibitor

D3.6. Elastase Inhibitors
- D3.6.1 Therapeutic Utility of Elastase Inhibitors
- D3.6.2 Analysis of the HLE Active Site
- D3.6.3 Complex of MSACK with HLE
- D3.6.4 Analysis of the Binding of MSACK
- D3.6.5 The Design of a New Elastase Inhibitor
- D3.6.6 Complex of Inhibitor with PPE Elastase
- D3.6.7 Binding of Aminopyrimidone Candidate

D3.7. Human Rhinovirus Inhibitors
- D3.7.1 Inhibition of Human Rhinovirus Protein
- D3.7.2 The Mechanism of Action of WIN54954
- D3.7.3 Complex of WIN54954 with Rhinovirus HRV14
- D3.7.4 Binding of WIN54954 with Rhinovirus HRV14
- D3.7.5 Optimization of WIN54954

D3.8. Rotamase Inhibitors
- D3.8.1 Utility of Rotamase Inhibitors
- D3.8.2 Complex of FK506 with FKBP
- D3.8.3 Analysis of the Binding of FK506
- D3.8.4 Design of a New Rotamase Inhibitor
- D3.8.5 The Pipecolyl Inhibitor Mimics FK506
- D3.8.6 Binding of the Pipecolyl Inhibitor

D3.9. Renin Inhibitors
- D3.9.1 Therapeutic Utility of Renin Inhibitors
- D3.9.2 The Design of Renin Inhibitors
- D3.9.3 Complex of Statine with Rhizopuspepsin
- D3.9.4 Analysis of the Binding of Statine
D3.9.5 Design of a Macrocyclic Renin Inhibitor
D3.9.6 Inaccuracies in Homology Models

D3.10. Dihydrofolate Reductase Inhibitors
- D3.10.1 Utility of Dihydrofolate Reductase Inhibitors
- D3.10.2 Complex of Methotrexate with DHFR
- D3.10.3 Binding Mode of Methotrexate with DHFR
- D3.10.4 Trimethoprim: a DHFR Inhibitor
- D3.10.5 The Design of a Novel DHFR-Inhibitor
- D3.10.6 Complex of Brodimoprim with DHFR
- D3.10.7 Binding of Brodimoprim with DHFR

D3.11. Sialidase Inhibitors
- D3.11.1 The Sialidase Enzyme
- D3.11.2 Therapeutic Utility of Sialidase Inhibitors
- D3.11.3 Complex of Sialic Acid with Sialidase
- D3.11.4 Analysis of Sialic Acid Binding
- D3.11.5 The Design of a Potent Sialidase Inhibitor

D3.12. Inhibitors of Carbonic Anhydrase
- D3.12.1 The Carbonic Anhydrase Protein
- D3.12.2 Therapeutic Utility of CA Inhibitors
- D3.12.3 MK-417 is a Potent Inhibitor of CA
- D3.12.4 Binding of MK-417 with CA Protein
- D3.12.5 S Enantiomer is more Potent than the R
- D3.12.6 Optimization of MK-417
- D3.12.7 Dorzolamide, a Potent Inhibitor of CA
- D3.12.8 Complex of CA with Dorzolamide
- D3.12.9 Binding of Dorzolamide with CA Protein

D3.13. Factor Xa Inhibitors
- D3.13.1 Therapeutic Utility of Factor Xa Inhibitors
- D3.13.2 DX-9065a : a Factor Xa Inhibitor
- D3.13.3 Complex Between Factor Xa and DX-9065a
- D3.13.4 Analysis of the Factor Xa and DX-9065a Complex
- D3.13.5 Role of the Carboxylic Acid in Selectivity
- D3.13.6 Initial Inhibitor Design
- D3.13.7 Design (step 1): Structural Moiety for Pocket S1
- D3.13.8 Design (step 2): Structural Moiety for Pocket S4
- D3.13.9 Design (step 3): Design of the Spacer
- D3.13.10 Design (step 4): Positioning of the Carboxylate
- D3.13.11 Discovery of a Lead Compound
- D3.13.12 Optimization of the Designed Series

D3.14. CHAPTER QUIZZES (Available only in Teaching Package)
- D3.14.1 Quiz 1
- D3.14.2 Quiz 2
- D3.14.3 Quiz 3
- D3.14.4 Quiz 4
- D3.14.5 Quiz 5
- D3.14.6 Quiz 6
- D3.14.7 Quiz 7
- D3.14.8 Quiz 8
- D3.14.9 Quiz 9
E. PHARMACOPHORE-BASED DRUG DESIGN

- E1. PHARMACOPHORE-BASED DRUG DESIGN: ANALYSIS
 - E1.1. Introduction
 - E1.1.1 Pharmacophore-Based Drug Design
 - E1.1.2 Operational Strategy: Molecular Mimicry
 - E1.1.3 Analogy with Keys
 - E1.1.4 Active Molecules are Complicated Keys
 - E1.1.5 Definition of a Pharmacophore
 - E1.2. Analytical Process
 - E1.2.1 The Analytical Process
 - E1.2.2 Data Collection Stage
 - E1.2.3 Analysis Stage
 - E1.2.4 Design Phase
 - E1.3. Simple Case
 - E1.3.1 Introduction with a Simple Case
 - E1.3.2 Molecular Similarity
 - E1.3.3 Superimpositions
 - E1.3.4 Goal of Superimposition Procedures
 - E1.3.5 Summary of the Example
 - E1.3.6 Superimposition Technique
 - E1.3.7 Dummy Atoms
 - E1.4. Typical Example
 - E1.4.1 A More Typical Example
 - E1.4.2 Identification of the Bioactive Conformation
 - E1.4.3 Conformational Example
 - E1.4.4 Bioactive Conformation: Geometry
 - E1.4.5 Bioactive Conformation: Energy
 - E1.4.6 Reduction of the Complexity
E1.4.7 Bioactive Conformations Must be Superimposable
E1.4.8 Systematic Superimposition of Conformers
E1.4.9 Results with High Informational Content
E1.4.10 Summary

E1.5. Complexity Levels
E1.5.1 Rigid and Flexible Molecules
E1.5.2 Bioactive Conformation of GABA
E1.5.3 Superimposition in the Space of Properties
E1.5.4 Superimposition in the Space of Properties: Example

E1.6. Principles of Analysis
E1.6.1 Complexity of Analyses
E1.6.2 Six Rules for Analyses
E1.6.3 Common Structural Features: Rule 1
E1.6.4 Multiple Hypotheses: Rule 2
E1.6.5 Inactive Molecules: Rule 3
E1.6.6 Closely Related Molecules: Rule 4
E1.6.7 Molecules With No Common Features: Rule 5
E1.6.8 Mapping the Receptor: Rule 6

E1.7. Conformational Control
E1.7.1 Control of the Molecular Geometries
E1.7.2 3D Considerations
E1.7.3 Example
E1.7.4 2D Considerations
E1.7.5 Example
E1.7.6 Misuse of Structural Information

E1.8. Managing Hypotheses
E1.8.1 Initial Requirements
E1.8.2 Same Mechanism of Action?
E1.8.3 Chlorpromazine Example
E1.8.4 Tracking & Reconsidering Hypotheses
E1.8.5 Incorrect Hypotheses
E1.8.6 Example 1
E1.8.7 Example 2
E1.8.8 Multiple Pharmacophore Hypotheses
E1.8.9 Multiple Pharmacophore Hypotheses: Example
E1.8.10 Poor Initial Data: Too Many Hypotheses
E1.8.11 Validating Hypotheses by Chemical Syntheses
E1.8.12 Browser of Dopamine D2 Agents

E1.9. Molecular Similarities Limitations
E1.9.1 Limitations of Molecular Similarities
E1.9.2 Phenyl-Imidazole Example
E1.9.3 Phenyl-Imidazole Browser

E1.10. Receptor Mapping
E1.10.1 The Role of Inactive Molecules
E1.10.2 Inactive Analog of Nifedipine
E1.10.3 Rearrangement of the Bioactive Conformation
E1.10.4 Judging with Discernment
E1.10.5 The Active Analog Principle
E1.10.6 Active Analog Approach Browser
E1.10.7 Example of Receptor Mapping

E1.11. Two Generations of Pharmacophores
E1.11.1 The Two Generations of Pharmacophores
E1.11.2 The First Generation of Pharmacophores
E1.11.3 The Second Generation of Pharmacophores
E1.11.4 Future

E1.12. Example of Analysis
E1.12.1 Antibiotic Activities in the Cephalosporin Series
E1.12.2 Stereochemical Hypothesis
E1.12.3 Attempts Towards a Geometrical Interpretation
E1.12.4 The Lactam Nitrogen Pyramidality Hypothesis
E1.12.5 Deficiency of the Nitrogen Pyramidality Hypothesis
E1.12.6 Bioactive Conformation of Penicillins?
E1.12.7 Revealing Bioactive Conformation of Penicillins
E1.12.8 Separation Between Active and Inactive Molecules
E1.12.9 Other Beta-Lactam Antibiotic Structures
E1.12.10 Browser of Beta-Lactam Antibiotics
E1.12.11 Validation and Perspectives

E1.13. Summary
E1.13.1 Pharmacophore-Based Drug Design Summary

E1.14. CHAPTER QUIZZES (Available only in Teaching Package)
E1.14.1 Quiz 1
E1.14.2 Quiz 2
E1.14.3 Quiz 3
E1.14.4 Quiz 4
E1.14.5 Quiz 5
E1.14.6 Quiz 6
E1.14.7 Quiz 7
E1.14.8 Quiz 8
E1.14.9 Quiz 9
E1.14.10 Quiz 10
E1.14.11 Quiz 11
E1.14.12 Quiz 12
E1.14.13 Quiz 13
E1.14.14 Quiz 14
E1.14.15 Quiz 15
E1.14.16 Quiz 16
E1.14.17 Quiz 17
E1.14.18 Quiz 18
E1.14.19 Quiz 19
E1.14.20 Quiz 20
E1.14.21 Quiz 21
E1.14.22 Quiz 22
E1.14.23 Quiz 23
E1.14.24 Quiz 24
E1.14.25 Quiz 25
E1.14.26 Quiz 26
E1.14.27 Quiz 27
E2. PHARMACOPHORE-BASED DRUG DESIGN: DESIGN

- E2.1. Introduction
 - E2.1.1 Beginning the Design Phase
 - E2.1.2 Creativity of the Design
 - E2.1.3 Good Control of the Conformational Features
 - E2.1.4 Butaclamol Example (Bad Design & Bad Results)
 - E2.1.5 Staurosporine Example (Bad Design & Good Results)
 - E2.1.6 Obvious Design
 - E2.1.7 Design of Cholecystokinin Receptor Ligands
 - E2.1.8 Pharmacophore Analysis: CCK-A Antagonists
 - E2.1.9 Design of a New Lorglumide Analog

- E2.2. The Four Design Methods
 - E2.2.1 The Four Design Methods

- E2.3. Chemical Modifications
 - E2.3.1 Principles of Analog Design
 - E2.3.2 Bioisosteric Replacements: Principle
E2.3.3 Bioisosteric Replacements: Diazepam
E2.3.4 Bioisosteric Replacements: Beta-Blockers
E2.3.5 Rigid Analogs: Principle
E2.3.6 Rigid Analogs: Dopaminergics
E2.3.7 Alteration of Ring Size: Principle
E2.3.8 Alteration of Ring Size: Imipramine
E2.3.9 Ring Suppression: Principle
E2.3.10 Ring Suppression: Doxepin
E2.3.11 Homologation of Alkyl Chains: Principle
E2.3.12 Homologation of Alkyl Chains: Apomorphine
E2.3.13 Alteration of Stereochemistry: Principle
E2.3.14 Alteration of Stereochemistry: Progesterone
E2.3.15 Homologation by Simplification: Bromocryptine
E2.3.16 Altering Interatomic Distances
E2.3.17 Aromatic Ring Position Isomers: Principle
E2.3.18 Aromatic Ring Position Isomers: β Adrenergic Drugs
E2.3.19 Chemical Modifications for SAR Information

E2.4. Database Searching
E2.4.1 3D Database Searching
E2.4.2 Problems of Conformational Complexity
E2.4.3 Example of 3D Searching: Pharmacophore Query
E2.4.4 Hit Obtained by 3D Database Searching
E2.4.5 Example of 3D Database Searching: Shape Query
E2.4.6 Molecules Obtained by Shape Searching
E2.4.7 Databases of Molecules in 3D
E2.4.8 Databases of Commercial Molecules

E2.5. De-Novo Design
E2.5.1 Automated Construction Approaches
E2.5.2 Algorithm Based Approaches
E2.5.3 Example of Construction Approach
E2.5.4 Query Pharmacophore: 5-Alpha Reductase Example
E2.5.5 A Generated Solution
E2.5.6 Automated Construction Approach: Example

E2.6. Manual Design
E2.6.1 Introduction to Manual Design
E2.6.2 Importance of the Visualization
E2.6.3 Tools in Manual Design
E2.6.4 Fully Exploiting the Fruits of the Analyses
E2.6.5 Creativity
E2.6.6 Design of a Spacer: a Step-by-Step Process
E2.6.7 Manual Mimicking

E2.7. Examples of Design
E2.7.1 EGFR Protein Tyrosine Kinase Inhibitors
E2.7.2 Comparing the Structures of Staurosporine and ATP
E2.7.3 CGP52411 a Simplified Staurosporine Molecule
E2.7.4 Bidentate Anchorage of CGP52411
E2.7.5 The Design of a New EGF-R PTK Inhibitor
E2.7.6 Browser of EGF-R Protein Kinase Inhibitors

E2.8. Conclusion
E2.8.1 Conclusion

E2.9. CHAPTER QUIZZES (Available only in Teaching Package)
 - E2.9.1 Quiz 1
 - E2.9.2 Quiz 2
 - E2.9.3 Quiz 3
 - E2.9.4 Quiz 4
 - E2.9.5 Quiz 5
 - E2.9.6 Quiz 6
 - E2.9.7 Quiz 7
 - E2.9.8 Quiz 8
 - E2.9.9 Quiz 9
 - E2.9.10 Quiz 10
 - E2.9.11 Quiz 11
 - E2.9.12 Quiz 12
 - E2.9.13 Quiz 13
 - E2.9.14 Quiz 14
 - E2.9.15 Quiz 15
 - E2.9.16 Quiz 16
 - E2.9.17 Quiz 17
 - E2.9.18 Quiz 18
 - E2.9.19 Quiz 19
 - E2.9.20 Quiz 20
 - E2.9.21 Quiz 21
 - E2.9.22 Quiz 22
 - E2.9.23 Quiz 23
 - E2.9.24 Quiz 24
 - E2.9.25 Quiz 25
 - E2.9.26 Quiz 26
 - E2.9.27 Quiz 27
 - E2.9.28 Quiz 28
 - E2.9.29 Quiz 29
 - E2.9.30 Quiz 30
 - E2.9.31 Quiz 31
 - E2.9.32 Quiz 32
 - E2.9.33 Quiz 33
 - E2.9.34 Quiz 34
 - E2.9.35 Quiz 35

E3. PHARMACOPHORE-BASED DRUG DESIGN: EXAMPLES
 - E3.1. Substance P Antagonists
 - E3.1.1 Therapeutic Utility of Substance P Antagonists
 - E3.1.2 Reference Set of Substance P Antagonists
 - E3.1.3 Pharmacophore for Substance P Antagonists
 - E3.1.4 Origin of the Poor Activity of SP4
 - E3.1.5 Constrained Boat Conformation of CP96345
 - E3.1.6 The Design of a Potent Substance P Antagonist
 - E3.1.7 The Superimposition of CP96345 and CP99994
 - E3.1.8 Browser of Substance P Antagonists
 - E3.2. Dopamine D-1 Agonists
E3.2.1 Therapeutic Utility of Dopamine D1 Agonists
E3.2.2 Pharmacophore for Dopamine D1 Agonists
E3.2.3 Browser of Dopamine Receptor D1 Agonists

E3.3. Non-Tricyclic Antidepressants
E3.3.1 Mode of Action of Tricyclic Antidepressants
E3.3.2 Reference Set of Antidepressant Molecules
E3.3.3 Invalidation of the "Butterfly" Model
E3.3.4 Pharmacophore for Antidepressants
E3.3.5 Browser for Antidepressant Agents
E3.3.6 The Design of RU-22249
E3.3.7 Browser for Antidepressant Agents

E3.4. Hypolipemic Agents
E3.4.1 Reference Set of Hypolipemic Agents
E3.4.2 Design of a New Hypolipemic Agent
E3.4.3 RU 25961 is a 3D Mimic of Treloxinate
E3.4.4 Browser of Hypolipemic Agents
E3.4.5 Methyl Treloxinate
E3.4.6 Browser of Hypolipemic Agents

E3.5. ACE Inhibitors
E3.5.1 Therapeutic Utility of ACE Inhibitors
E3.5.2 The ACE Enzyme
E3.5.3 Discovery of the First ACE Inhibitor
E3.5.4 Design of New ACE Inhibitors
E3.5.5 Pharmacophore for ACE Inhibition
E3.5.6 Browser for ACE Inhibition

E3.6. Anti-Histaminic H-2 Antagonists
E3.6.1 Therapeutic Utility of H-2 Receptor Antagonists
E3.6.2 Design of an Antiulcer Lead Compound
E3.6.3 Pharmacophore for H-2 Antagonists
E3.6.4 Browser of H-2 Receptor Antagonists

E3.7. Aromatase Inhibitors
E3.7.1 Therapeutic Utility of Aromatase Inhibitors
E3.7.2 Reference Set of Aromatase Inhibitors
E3.7.3 Pharmacophore for Aromatase Inhibitors
E3.7.4 The Design of a New Inhibitor of Aromatase
E3.7.5 Browser of Aromatase Inhibitors

E3.8. Dopamine D-2 Antagonists
E3.8.1 Utility of Dopamine D2 Receptor Antagonists
E3.8.2 Some Antipsychotic Agents
E3.8.3 Reference Set of D2 Receptor Antagonists
E3.8.4 Pharmacophore for Dopamine D2 Antagonists
E3.8.5 The Design of RO-221319
E3.8.6 Browser of D2 Receptor Antagonists

E3.9. Serotonin Antagonists
E3.9.1 Therapeutic Utility of Serotonin Antagonists
E3.9.2 Superimposition of Serotonin Receptor Antagonists
E3.9.3 Pharmacophore for Serotonin Antagonists
E3.9.4 The Design of MDL 72832
E3.9.5 Browser of Serotonin Receptor Antagonists

E3.10. Aldose Reductase Inhibitors
- E3.10.1 Therapeutic Utility of Aldose Reductase Inhibitors
- E3.10.2 Pharmacophore for Aldose Reductase Inhibitors
- E3.10.3 Browser of Aldose Reductase Inhibitors
- E3.10.4 The Design of AY31358
- E3.10.5 Browser of Aldose Reductase Inhibitors

E3.11. GABA-Uptake Inhibitors
- E3.11.1 Therapeutic Utility of GABA-Uptake Inhibitors
- E3.11.2 Reference Set of GABA-Uptake Inhibitors
- E3.11.3 Pharmacophore of GABA-Uptake Inhibitors
- E3.11.4 Browser of GABA-Uptake Inhibitors
- E3.11.5 Design of a New GABA-Uptake Inhibitor
- E3.11.6 Browser of GABA-Uptake Inhibitors

E3.12. Beta-Lactam Antibiotics
- E3.12.1 Biological Action of Beta-Lactam Antibiotics
- E3.12.2 Does Penicillin Mimic an Endogenous Peptide?
- E3.12.3 Attempts to Increase Antibacterial Activities
- E3.12.4 A Good Hypothesis with a Bad Design!
- E3.12.5 An Example of a Good Hypothesis Well Exploited
- E3.12.6 Browser of Beta-Lactam Antibiotics

E3.13. Polymerase-1 Inhibitors
- E3.13.1 Therapeutic utility of PARP-1 Inhibitors
- E3.13.2 3-Amino Benzamide PARP-1 Inhibitor
- E3.13.3 Design with Carboxamide Geometry Locked
- E3.13.4 Synthesis of the Designed Tricyclic Compounds
- E3.13.5 Validation of the Concept by X-Ray Crystallography
- E3.13.6 Browser

E3.14. CHAPTER QUIZZES (Available only in Teaching Package)
- E3.14.1 Quiz 1
- E3.14.2 Quiz 2
- E3.14.3 Quiz 3
- E3.14.4 Quiz 4
- E3.14.5 Quiz 5
- E3.14.6 Quiz 6
- E3.14.7 Quiz 7
- E3.14.8 Quiz 8
- E3.14.9 Quiz 9
- E3.14.10 Quiz 10
- E3.14.11 Quiz 11
- E3.14.12 Quiz 12
- E3.14.13 Quiz 13
- E3.14.14 Quiz 14
- E3.14.15 Quiz 15
- E3.14.16 Quiz 16
- E3.14.17 Quiz 17
- E3.14.18 Quiz 18
- E3.14.19 Quiz 19
- E3.14.20 Quiz 20
F. QSAR AND CHEMOMETRICS

- F1. QSAR PRINCIPLES AND METHODS
 - F1.1. Introduction to QSAR
 - F1.1.1 Molecular Structure and Molecular Properties
 - F1.1.2 Structure-Property Relationships: Example 1
 - F1.1.3 Structure-Property Relationships: Example 2
 - F1.1.4 Structure-Property Relationships: Example 3
 - F1.1.5 What is QSAR?
 - F1.1.6 What is QSPR?
 - F1.1.7 Focus on a Single Property at a Time
 - F1.1.8 Molecular Descriptors
 - F1.1.9 Examples of Molecular Descriptors
 - F1.1.10 The QSAR Equations
 - F1.1.11 Types of Molecular Descriptors
 - F1.1.12 Molecular Descriptors: 1D
 - F1.1.13 Molecular Descriptors: 2D
 - F1.1.14 Molecular Descriptors: 3D
 - F1.1.15 A Multitude of Molecular Descriptors
 - F1.1.16 Biologically Relevant Descriptors
 - F1.1.17 Application of QSAR
 - F1.1.18 Understanding Structure-Activity Relationships
 - F1.1.19 Designing Compounds with Improved Activities
 - F1.1.20 Reducing a Virtual Library to a Practical Size
 - F1.2. The Foundations of QSAR
 - F1.2.1 Birth of QSAR
 - F1.2.2 The Foundations of QSAR
 - F1.2.3 The Hammett Contribution
 - F1.2.4 Dissociation Constants of Substituted Benzoic Acids
 - F1.2.5 Dissociation of Substituted Phenylacetic Acids
 - F1.2.6 Linear Free Energy Relationship
 - F1.2.7 The Hammett Equation
 - F1.2.8 The Meaning of ρ
 - F1.2.9 The Meaning of σ
 - F1.2.10 Examples of σ Constants
 - F1.2.11 Predicting the pKa of Benzoic Acid Compounds
 - F1.2.12 Hansch Contribution
 - F1.2.13 The Importance of Lipophilicity
 - F1.2.14 LogP is a Measure of Compounds Lipophilicity
 - F1.2.15 Correlation of LogP with Biological Activities
 - F1.2.16 Example of Correlation with LogP
F1.2.17 Improvements of the Initial Model
F1.2.18 The π Descriptor
F1.2.19 The MR Descriptor
F1.2.20 The Taft Descriptor (ES)
F1.2.21 Meaning of Parabolic Dependence on LogP
F1.2.22 The Free-Wilson Analysis
F1.2.23 Indicator Variables and Substituent Weights
F1.2.24 Free-Wilson Structural Matrix
F1.2.25 Example of Structural Matrix
F1.2.26 Example of Free-Wilson Equation
F1.2.27 Predictability of the Model
F1.2.28 Understanding the Molecular Determinants

F1.3. Design of a QSAR Model
F1.3.1 Embarking on the Design of a QSAR Model
F1.3.2 The Four Steps
F1.3.3 An Iterative Process

F1.4. Compounds Selection: Step 1
F1.4.1 Compounds Selection
F1.4.2 Predictions by Interpolation
F1.4.3 Example of Extrapolative Model
F1.4.4 Identification of Outliers
F1.4.5 Biological Activities in Terms of Log 1/C

F1.5. Descriptors Selection: Step 2
F1.5.1 Descriptors Selection
F1.5.2 Methods for Selecting Relevant Descriptors
F1.5.3 Manual Selection of Descriptors
F1.5.4 Automated Selection of Descriptors
F1.5.5 Systematic Combination of Descriptors
F1.5.6 Methods for Selecting a Subset of Descriptor
F1.5.7 Forward Selection
F1.5.8 Backward Elimination
F1.5.9 Stepwise Regression
F1.5.10 Scaling Descriptors
F1.5.11 Correlation Between Descriptors
F1.5.12 Example of Correlated Descriptors
F1.5.13 Solution to the Problem of Correlated Descriptors
F1.5.14 The Holy Grail in QSAR

F1.6. Deriving the Equation: Step 3
F1.6.1 Deriving The QSAR Equation
F1.6.2 The Starting Point: The Study Table
F1.6.3 Graphical Analysis of the Data
F1.6.4 Choice of the Mathematical Equation
F1.6.5 Complexity Levels and Data Overfitting
F1.6.6 Mathematics are Very (too) Powerful
F1.6.7 Illustration with an Example
F1.6.8 A Simple Model
F1.6.9 A Complex Model
F1.6.10 Comparing the Two Models
F1.6.11 Predictive Power of the Simple Model
F1.6.12 Predictive Power of the Complex Model
F1.6.13 Complexity Dictated by Predictability of the Model
F1.6.14 Single Linear Equation: Mathematical Outline
F1.6.15 Calculating b0 and b1
F1.6.16 Multiple Linear Regression: Mathematical Outline
F1.6.17 Example: MLR vs. Single Linear Models
F1.6.18 The Mathematics of MLR: a Single Sample
F1.6.19 The Mathematics of MLR: Many Molecules
F1.6.20 The Solution of MLR
F1.6.21 Analysis of the MLR Equation
F1.6.22 Non-Linear Equations
F1.6.23 Example of Non-Linear Model
F1.6.24 Typical Non-Linear Equations

F1.7. Validating the Model: Step 4
F1.7.1 Tools for Assessing the Quality of a Model
F1.7.2 Predictive and non-Predictive Models
F1.7.3 The Standard Deviation
F1.7.4 Correlation Index r²
F1.7.5 The Mathematics of r²
F1.7.6 TSS, the Total Variance
F1.7.7 RSS, the Explained Variance
F1.7.8 t-test for Single Descriptors and Significance of r²
F1.7.9 Shape of t-distribution and Number of Molecules
F1.7.10 Student's t-test Procedure
F1.7.11 F-test for Assessing the Significance of r²
F1.7.12 Performing the F-test
F1.7.13 F-test Procedure
F1.7.14 Assessing the Predictive Power of a Model
F1.7.15 The Test Set Method
F1.7.16 The Cross Validation Method
F1.7.17 Limits of the Cross Validation Method
F1.7.18 The Predictive Index Q²
F1.7.19 Summary

F1.8. Example of Simple Linear Regression
F1.8.1 Example of Capsaicin Analogs
F1.8.2 Relevant Descriptors of Capsaicin Analogs
F1.8.3 The Capsaicin Study Table
F1.8.4 Graphical Analysis of Capsaicin Analogs
F1.8.5 Deriving a QSAR Linear Equation
F1.8.6 Experimental vs. Calculated Values
F1.8.7 Calculating r² for the Capsaicin analogs
F1.8.8 t-test for the Capsaicin Analogs
F1.8.9 F-test for a Series of the Capsaicin Analogs
F1.8.10 The QSAR Equation for the Capsaicin Analogs
F1.8.11 Predicting the Activities of Unknown Compounds

F1.9. CHAPTER QUIZZES (Available only in Teaching Package)
F1.9.1 Quiz 1
F1.9.2 Quiz 2
F1.9.3 Quiz 3
F1.9.4 Quiz 4
F2. 3D-QSAR

F2.1. Introduction
- F2.1.1 Molecular Binding Occurs in 3D
- F2.1.2 How Does the Receptor Perceives the Ligand?
- F2.1.3 What is 3D-QSAR?
- F2.1.4 Principle of 3D-QSAR Approach
- F2.1.5 Intermolecular Forces
- F2.1.6 Electrostatic Field
- F2.1.7 Steric Field
- F2.1.8 Difference between 2D-QSAR and 3D-QSAR

F2.2. Molecular Interaction Fields (MIF)
- F2.2.1 Interaction Field Surrounding a Molecule
- F2.2.2 Perception of Interaction Fields
- F2.2.3 The Probe Concept
- F2.2.4 Probing Steric Field with Single Atom Probe
- F2.2.5 Probing Electrostatic Field with Single Atom Probe
- F2.2.6 Multi-Atom Probes
- F2.2.7 3D Lattice and Grid Points to Capture the MIFs
- F2.2.8 Calculating the Electrostatic Field
- F2.2.9 Calculating the Steric Field
- F2.2.10 Visualization of MIFs with Iso-Potential Surfaces
- F2.2.11 Other Molecular Interaction Fields

F2.3. The GRID Approach
- F2.3.1 The GRID Approach
- F2.3.2 GRID: a Structure-Based Approach
- F2.3.3 Probing the Nature of the Active Site
- F2.3.4 The GRID Probes
- F2.3.5 Integration of GRID with Other Programs
- F2.3.6 Typical Use of GRID
- F2.3.7 Outline of a GRID Calculation
- F2.3.8 3D Coordinates of the Protein
- F2.3.9 Binding Site to be Explored
- F2.3.10 Selection of Probes
- F2.3.11 Run of GRID
- F2.3.12 Output of GRID
- F2.3.13 Total Number of Calculations
- F2.3.14 De Novo Design of New Scaffolds

- **F2.4. CoMFA: First 3D-QSAR Method**
 - F2.4.1 From GRID to 3D-QSAR
 - F2.4.2 Comparative Molecular Field Analyses (CoMFA)
 - F2.4.3 Development of a Correlation Function
 - F2.4.4 Rapid Outline of a CoMFA Calculation
 - F2.4.5 Reference Compounds and Initial Assumptions
 - F2.4.6 Superimpose the Structures
 - F2.4.7 Calculate the MIF at Grid Each Points
 - F2.4.8 Derive a Correlation Function
 - F2.4.9 Molecular Alignment Issues
 - F2.4.10 Template or Atom Alignments
 - F2.4.11 Pharmacophore Alignments
 - F2.4.12 Shape Alignments
 - F2.4.13 Field Fitting
 - F2.4.14 Electrostatic Field Alignment
 - F2.4.15 Moment Alignments
 - F2.4.16 Receptor Based Alignments
 - F2.4.17 Alignment from X-ray Data
 - F2.4.18 The Bioactive Conformation Issue
 - F2.4.19 Deriving the 3D-QSAR Correlation Function
 - F2.4.20 Problem of Number of CoMFA Descriptors
 - F2.4.21 PLS: the Partial Least-Squares Method
 - F2.4.22 Geometrical Interpretation of PLS
 - F2.4.23 The First PLS Component
 - F2.4.24 The Second PLS Component
 - F2.4.25 3D-QSAR Equation in the PLS Space
 - F2.4.26 Back to Space of Original Descriptors
 - F2.4.27 The 3D-QSAR Equation in the Original Data Space
 - F2.4.28 Many Terms in the 3D-QSAR Equation
 - F2.4.29 Measuring the Quality of the Relationship
 - F2.4.30 Total Number of PLS Components
 - F2.4.31 Two Equivalent 3D-QSAR Equations
 - F2.4.32 Predicting the Activities of New Compounds
 - F2.4.33 CoMFA Coefficient Contour Maps
 - F2.4.34 CoMFA Steric Contour Map
 - F2.4.35 CoMFA Electrostatic Contour Map
 - F2.4.36 CoMFA Contour Maps vs. MIF Contour Maps
 - F2.4.37 Analysis of Steric Contour Maps
 - F2.4.38 Analysis of Electrostatic Contour Maps
 - F2.4.39 Exploitation of the Steric Contour Map
 - F2.4.40 Exploitation of the Electrostatic Contour Map
 - F2.4.41 Stability Problem of CoMFA Models

- **F2.5. Example of CoMFA Analysis: Steroids**
 - F2.5.1 The Reference Compounds
 - F2.5.2 The Biological Data
 - F2.5.3 Molecular Alignment
 - F2.5.4 CoMFA Field Calculations
 - F2.5.5 CoMFA and PLS Results vs. Classical QSAR
 - F2.5.6 Steric CoMFA Map for Binding to TBG
F2.5.7 Electrostatic CoMFA Map for Binding to TBG
F2.5.8 CBG Affinities of New Steroids
F2.5.9 Predicting the CBG Affinities of New Steroids
F2.5.10 A Benchmark Set for 3D-QSAR

F2.6. Other 3D-QSAR Methods
F2.6.1 3D-QSAR Programs
F2.6.2 Best Method?
F2.6.3 CoMFA
F2.6.4 HASL
F2.6.5 CoMSIA
F2.6.6 CoMMA
F2.6.7 MS-WHIM
F2.6.8 SOMFA
F2.6.9 HQSAR
F2.6.10 GRIND
F2.6.11 Quasar
F2.6.12 CoMASA
F2.6.13 WeP

F2.7. Conclusion
F2.7.1 Conclusion

F2.8. CHAPTER QUIZZES (Available only in Teaching Package)
F2.8.1 Quiz 1
F2.8.2 Quiz 2
F2.8.3 Quiz 3
F2.8.4 Quiz 4
F2.8.5 Quiz 5
F2.8.6 Quiz 6
F2.8.7 Quiz 7
F2.8.8 Quiz 8
F2.8.9 Quiz 9
F2.8.10 Quiz 10
F2.8.11 Quiz 11
F2.8.12 Quiz 12
F2.8.13 Quiz 13
F2.8.14 Quiz 14
F2.8.15 Quiz 15
F2.8.16 Quiz 16
F2.8.17 Quiz 17
F2.8.18 Quiz 18
F2.8.19 Quiz 19
F2.8.20 Quiz 20
F2.8.21 Quiz 21
F2.8.22 Quiz 22
F2.8.23 Quiz 23
F2.8.24 Quiz 24
F2.8.25 Quiz 25
F2.8.26 Quiz 26
F2.8.27 Quiz 27
F2.8.28 Quiz 28
F2.8.29 Quiz 29
G. SYNTHESIS AND LIBRARY DESIGN

- G1. SYNTHESIS OF DRUGS
 - G1.1. Introduction
 - G1.1.1 Why to Synthesize a New Molecule?
 - G1.1.2 Drug Discovery
 - G1.1.3 Bulk Production
 - G1.1.4 Goal of the Synthesis
 - G1.1.5 General Requirements before Starting
 - G1.1.6 Number of Steps and Intermediates
 - G1.1.7 Measurable Reaction's Characteristics
 - G1.1.8 Yield
 - G1.1.9 Reaction Rate
 - G1.1.10 Product Selectivity
 - G1.1.11 Regioselectivity and Regiospecificity
 - G1.1.12 Stereoselectivity and Stereospecificity
 - G1.1.13 Thermodynamic and Kinetic Properties of the Reaction
 - G1.1.14 Thermodynamics
 - G1.1.15 Kinetics
 - G1.1.16 Determinants of a Chemical Reaction
 - G1.1.17 Steric Effects
 - G1.1.18 Electronics Effects
 - G1.1.19 Solvent Effects
 - G1.1.20 How to Influence a Reaction?
 - G1.1.21 Reactant Choice
 - G1.1.22 Reagent Choice
 - G1.1.23 Reaction Conditions
 - G1.1.24 Influence of pH
 - G1.1.25 Influence of the Solvent
 - G1.1.26 Catalysts
 - G1.1.27 Tools for Following the Progression of a Reaction
 - G1.1.28 Spectroscopy
 - G1.1.29 Mass Spectra (MS)
 - G1.1.30 Infrared (IR)
 - G1.1.31 Nuclear Magnetic Resonance (NMR)
 - G1.1.32 Ultraviolet (UV)
 - G1.1.33 Circular Dichroism (CD) and Optical Rotatory Dispersion (ORD)
 - G1.1.34 X-rays
 - G1.1.35 Chromatography
 - G1.1.36 High Performance Liquid Chromatography (HPLC)
 - G1.1.37 Chiral Chromatography
G1.2. Design Strategy

G1.2.1 Strategy Like a General in the Battle
G1.2.2 Flexibility in the Strategy
G1.2.3 Flexibility in the Synthetic Program
G1.2.4 Flexibility in the Target Molecule
G1.2.5 Nicolaou Statement on the Trip to Ithaca
G1.2.6 Linear and Convergent Strategy
G1.2.7 Linear Strategy
G1.2.8 Example: Captopril Linear Synthesis
G1.2.9 Convergent Strategy
G1.2.10 Convergent Advantage
G1.2.11 Example: Losartan Convergent Synthesis
G1.2.12 How to Analyze a Molecule for Synthesis?
G1.2.13 Three Methods for the Design of a Synthetic Program
G1.2.14 Adapt Known Synthetic Schemes
G1.2.15 Literature and Patent Searches
G1.2.16 Database Searching with Computer Programs
G1.2.17 Consider a Building Block Strategy
G1.2.18 Small Commercial Building Blocks
G1.2.19 Elaborated Building Blocks
G1.2.20 Starting from Scratch - Retrosynthetic Analysis
G1.2.21 Retrosynthetic Strategy
G1.2.22 Disconnection of Strategic Bonds
G1.2.23 Strategic Bonds Revealed by Small Modifications
G1.2.24 FGA
G1.2.25 FGI
G1.2.26 FGR
G1.2.27 The Retrosynthetic Process
G1.2.28 From TC to SM
G1.2.29 The Synthetic Program
G1.2.30 The Tetrodotoxin Example
G1.2.31 Simple Exercise in Retrosynthesis
G1.2.32 Retrosynthesis
G1.2.33 Synthesis
G1.2.34 Disconnection Methods for Retrosynthesis
G1.2.35 Homolytic Disconnection
G1.2.36 Heterolytic Disconnection
G1.2.37 Pericyclic Bond Disconnection
G1.2.38 Combining the Three Synthetic Methods

G1.3. Synthetic Tactic

G1.3.1 Principles of Synthetic Tactics
G1.3.2 Reaction Classifications
G1.3.3 By Changes Occurring in the Reactant Molecules
G1.3.4 By Reaction Types
G1.3.5 By Functional Groups
G1.3.6 Protecting Groups
G1.3.7 Protecting Reactive Centers
G1.3.8 Requirements for Protecting Groups
G1.3.9 Protection and Deprotection of Amino Acids
G1.3.10 Examples of Protecting Groups
G1.3.11 Alcohol Protection
G1.3.12 Carboxylic Acid Protection
G1.3.13 Amine Protection
G1.3.14 Phenol Protection
G1.3.15 How to Assess the Quality of a Synthesis?
G1.3.16 Syntheses of Swainsonine

G1.4. Stereochemical Issues
- G1.4.1 Why Chiral Drugs?
- G1.4.2 Examples of Chiral Drugs
- G1.4.3 Multiple Aspects of Molecular Chirality
- G1.4.4 Active and Inactive Enantiomers
- G1.4.5 'Chiral Switch': From a Racemic to a Chiral Drug
- G1.4.6 Advantages of Single Enantiomer Drugs
- G1.4.7 Pharmacokinetic Properties
- G1.4.8 Perhexiline
- G1.4.9 Selectivity
- G1.4.10 Ritalin
- G1.4.11 Penicillamine
- G1.4.12 Ethambutol
- G1.4.13 Ketamine
- G1.4.14 L-Dopa
- G1.4.15 Patent Position
- G1.4.16 Three Methods to Obtain Chiral Molecules
- G1.4.17 Racemic Route
- G1.4.18 Resolution of Racemates
- G1.4.19 Example of Industrial Racemate Separation
- G1.4.20 Recycling Undesired Enantiomer
- G1.4.21 Sometimes Separation very Difficult
- G1.4.22 When Too Many Chiral Centers
- G1.4.23 Asymmetric Route
- G1.4.24 Chiral Reagents and Reactants
- G1.4.25 Chiral Catalysts
- G1.4.26 Asymmetric Synthesis in R&D.
- G1.4.27 Extraction From Natural Sources
- G1.4.28 Stereoselectivity of Action not Always Predictable
- G1.4.29 Spontaneous Enantiomer Interconversion

G1.5. Structural Diversity and Higher Level Synthetic Strategies
- G1.5.1 Diverse Strategy in Drug Discovery
- G1.5.2 Introducing Diversity in the Reagents
- G1.5.3 Introducing Diversity at the Proper Time
- G1.5.4 Late Stage Introduction of Diversity
- G1.5.5 Early Stage Introduction of Diversity
- G1.5.6 Diversity Space Restricted by Synthetic Route
- G1.5.7 Consider Alternative Syntheses
- G1.5.8 Example of Introduction of Diversity
- G1.5.9 Combinatorial Chemistry
- G1.5.10 Diversity-Oriented Synthesis (DOS)
- G1.5.11 Maximizing the Chance to Find a Hit
- G1.5.12 Example of Diversity-Oriented Synthesis
- G1.5.13 Higher Level Strategies in Organic Synthesis

G1.6. Synthesis of Some Common Drugs
1.6.1 Introduction to Synthetic Schemes
1.6.2 Benzocaine
1.6.3 Retrosynthetic Scheme
1.6.4 Benzocaine Synthesis
1.6.5 Physico-Chemical Properties of Benzocaine
1.6.6 Aspirin
1.6.7 Aspirin Synthesis
1.6.8 Physico-Chemical Properties of Aspirin
1.6.9 Nalidixic Acid
1.6.10 Retrosynthetic Scheme
1.6.11 Nalidixic Acid Synthesis
1.6.12 Physico-Chemical Properties of Nalidixic Acid
1.6.13 Zidovudine (AZT)
1.6.14 Retrosynthetic Scheme
1.6.15 AZT Synthesis
1.6.16 Another Synthesis for AZT
1.6.17 Which Route is Preferable?
1.6.18 Physico-Chemical Properties of Zidovudine
1.6.19 Terfenadine
1.6.20 Retrosynthetic Scheme
1.6.21 Terfenadine Synthesis
1.6.22 Physico-Chemical Properties of Terfenadine
1.6.23 Nifedipine
1.6.24 Simple Retrosynthesis of Nifedipine
1.6.25 One-Pot Synthesis of Nifedipine
1.6.26 Two Steps Retrosynthesis Scheme of Nifedipine
1.6.27 Two Steps Synthesis of Nifedipine
1.6.28 Physico-Chemical Properties of Nifedipine
1.6.29 Sildenafil (Viagra)
1.6.30 Retrosynthetic Scheme
1.6.31 Sildenafil Synthesis
1.6.32 Physico-Chemical Properties of Sildenafil

1.7. Programs for Computer-Aided Synthesis
1.7.1 Programs for Computer-Aided Synthesis
1.7.2 Retrosynthetic Programs
1.7.3 LHASA
1.7.4 SYNCHEM
1.7.5 SECS, OCCS, CASP
1.7.6 Formal and Mathematically-Based Programs
1.7.7 IGOR
1.7.8 EROS
1.7.9 SYNGEN
1.7.10 RAIN
1.7.11 Forward Reaction Predictions
1.7.12 CAMEO
1.7.13 CHIRON
1.7.14 WODCA
1.7.15 Other Programs
1.7.16 AIPHOS
1.7.17 CAESA
1.7.18 AOCR
■ G1.7.19 SYSTEMATICHEM

■ G1.8. Databases for Organic Synthesis
 ■ G1.8.1 Databases for Organic Synthesis
 ■ G1.8.2 Printed Information
 ■ G1.8.3 Specialized Abstracting Services
 ■ G1.8.4 Chemical Abstracts Services (CAS)
 ■ G1.8.5 SciFinder
 ■ G1.8.6 Beilstein
 ■ G1.8.7 Gmelin
 ■ G1.8.8 Reaction Databases
 ■ G1.8.9 On-Line Resources
 ■ G1.8.10 Patent Databases
 ■ G1.8.11 US Patents: USPTO
 ■ G1.8.12 European Patents: EPOLINE
 ■ G1.8.13 Other Patent Databases

■ G1.9. CHAPTER QUIZZES (Available only in Teaching Package)
 ■ G1.9.1 Quiz 1
 ■ G1.9.2 Quiz 2
 ■ G1.9.3 Quiz 3
 ■ G1.9.4 Quiz 4
 ■ G1.9.5 Quiz 5
 ■ G1.9.6 Quiz 6
 ■ G1.9.7 Quiz 7
 ■ G1.9.8 Quiz 8
 ■ G1.9.9 Quiz 9
 ■ G1.9.10 Quiz 10
 ■ G1.9.11 Quiz 11
 ■ G1.9.12 Quiz 12
 ■ G1.9.13 Quiz 13
 ■ G1.9.14 Quiz 14
 ■ G1.9.15 Quiz 15
 ■ G1.9.16 Quiz 16
 ■ G1.9.17 Quiz 17
 ■ G1.9.18 Quiz 18
 ■ G1.9.19 Quiz 19
 ■ G1.9.20 Quiz 20
 ■ G1.9.21 Quiz 21
 ■ G1.9.22 Quiz 22
 ■ G1.9.23 Quiz 23
 ■ G1.9.24 Quiz 24
 ■ G1.9.25 Quiz 25
 ■ G1.9.26 Quiz 26
 ■ G1.9.27 Quiz 27
 ■ G1.9.28 Quiz 28
 ■ G1.9.29 Quiz 29
 ■ G1.9.30 Quiz 30
 ■ G1.9.31 Quiz 31
 ■ G1.9.32 Quiz 32
 ■ G1.9.33 Quiz 33
 ■ G1.9.34 Quiz 34
G1.9.35 Quiz 35
G1.9.36 Quiz 36
G1.9.37 Quiz 37
G1.9.38 Quiz 38
G1.9.39 Quiz 39
G1.9.40 Quiz 40
G1.9.41 Quiz 41
G1.9.42 Quiz 42
G1.9.43 Quiz 43
G1.9.44 Quiz 44
G1.9.45 Quiz 45
G1.9.46 Quiz 46
G1.9.47 Quiz 47
G1.9.48 Quiz 48
G1.9.49 Quiz 49
G1.9.50 Quiz 50
G1.9.51 Quiz 51
G1.9.52 Quiz 52
G1.9.53 Quiz 53
G1.9.54 Quiz 54
G1.9.55 Quiz 55
G1.9.56 Quiz 56
G1.9.57 Quiz 57
G1.9.58 Quiz 58
G1.9.59 Quiz 59
G1.9.60 Quiz 60
G1.9.61 Quiz 61
G1.9.62 Quiz 62
G1.9.63 Quiz 63
G1.9.64 Quiz 64
G1.9.65 Quiz 65
G1.9.66 Quiz 66
G1.9.67 Quiz 67
G1.9.68 Quiz 68
G1.9.69 Quiz 69
G1.9.70 Quiz 70
G1.9.71 Quiz 71
G1.9.72 Quiz 72
G1.9.73 Quiz 73
G1.9.74 Quiz 74
G1.9.75 Quiz 75
G1.9.76 Quiz 76
G1.9.77 Quiz 77
G1.9.78 Quiz 78
G1.9.79 Quiz 79
G1.9.80 Quiz 80
G1.9.81 Quiz 81
G1.9.82 Quiz 82
G1.9.83 Quiz 83
G1.9.84 Quiz 84
G1.9.85 Quiz 85
G2. LIBRARY DESIGN

G2.1. Introduction
- G2.1.1 Libraries of Molecules Prepared One by One
- G2.1.2 The Combinatorial Chemistry Boom
- G2.1.3 Initial Disappointments
- G2.1.4 The Quest of Quality
- G2.1.5 Chemical Diversity Space
- G2.1.6 Library Representation
- G2.1.7 Definition of a Virtual Library
- G2.1.8 Scaffolds-Substituents-Reactions

G2.2. The Basis of a Good Scaffold
- G2.2.1 Scaffold: the First Piece of a Complex Jigsaw Puzzle
- G2.2.2 Cyclic and Acyclic Scaffold
- G2.2.3 The Scaffold, a Fuzzy Concept
- G2.2.4 The Scaffold Names
- G2.2.5 Scaffold Requirements
- G2.2.6 Scaffold and ADME Properties
- G2.2.7 Geometrical Requirements
- G2.2.8 Avoid Clashes with the Receptor
- G2.2.9 Good Binding Interactions With the Scaffold
- G2.2.10 Good Vector Orientation
- G2.2.11 Patent Position and Novelty
- G2.2.12 Problems of Scaffolds Patentability
- G2.2.13 Patentable Scaffold
- G2.2.14 Validation of Novelty
- G2.2.15 Syntheses Amenable to Combinatorial Chemistry
- G2.2.16 Bond-Formation for Array Synthesis Methods
- G2.2.17 Ideal Scaffold: a Multi-Project Template
- G2.2.18 A Universal Spacer as a Master Key
- G2.2.19 Diversity of the Space Covered by the Substituents
G2.2.20 Benzodiazepine Scaffold as a Spacer
G2.2.21 A Master Key Adapted for a Family
G2.2.22 Kinase Example
G2.2.23 Gleevec: from PKC to Abl Inhibition
G2.2.24 Modulation with Simplified Staurosporine Scaffolds
G2.2.25 Quinazoline Scaffold

G2.3. Scaffold Selection and Design
- G2.3.1 Methods for Designing a new Scaffold
- G2.3.2 Small Modification of Known Scaffold
- G2.3.3 2D Similarity Searching
- G2.3.4 3D Superimpositions
- G2.3.5 Docking and Virtual Screening
- G2.3.6 3D Shape Searching
- G2.3.7 2D Pharmacophore Searching
- G2.3.8 3D Pharmacophore Searching
- G2.3.9 Vector Matching
- G2.3.10 Hybrids of Known Scaffolds
- G2.3.11 Creative Design

G2.4. Focused and Diverse Strategies
- G2.4.1 Library Design Goals
- G2.4.2 Library Design Assumptions - Similar Property Principle
- G2.4.3 Analogy with Battleships Game
- G2.4.4 Diversity Strategy
- G2.4.5 Molecular Diversity
- G2.4.6 Focused Strategies
- G2.4.7 Diverse vs. Focused
- G2.4.8 Library Design in the Global Drug Discovery Perspective
- G2.4.9 Informative Libraries
- G2.4.10 Commercial Informative Libraries

G2.5. CDK2 Example: Design of a Focused Library
- G2.5.1 Purine Scaffold as a Source of Bioactive Molecules
- G2.5.2 CDK2 Biological Target and Known Inhibitors
- G2.5.3 Diverse 2,6,9-trisubstituted Purine Libraries
- G2.5.4 Substituent Design
- G2.5.5 Additivity of the Biological Effects
- G2.5.6 Browser of Substituents at the C-2 Position
- G2.5.7 Browser of Substituents at the C-6 Position
- G2.5.8 Successive Rounds
- G2.5.9 Library Results

G2.6. Measuring Distances Between Molecules
- G2.6.1 Methods to Calculate Molecular Similarity
- G2.6.2 The Distance-Based and the Binary-Based Methods
- G2.6.3 The Property-Based Approach
- G2.6.4 Molecules in the Space of their Relevant Properties
- G2.6.5 From Molecular Properties to Molecular Descriptors
- G2.6.6 High-Dimensionality Space of the Molecular Descriptors
- G2.6.7 Similarity Coefficient and Distance Coefficient
- G2.6.8 Euclidean Distance
- G2.6.9 Tanimoto Coefficient
G2.6.10 The Structural Approach
G2.6.11 Relevant Structural Keys
G2.6.12 Extended 3D Fingerprints
G2.6.13 Example of Structural Key
G2.6.14 Similarity Coefficients and Distance Coefficients
G2.6.15 Binary Tanimoto Example
G2.6.16 Computational Speed
G2.6.17 Similarity Index of an Entire Library
G2.6.18 Huge Dataset of Undigested Information
G2.6.19 Principal Components Analysis

G2.7. Subset Selection Issues
G2.7.1 Subset Selection Problem
G2.7.2 Illustration of the Subset Selection Problem
G2.7.3 The Systematic Route
G2.7.4 Systematic Assessment Impracticable
G2.7.5 Solving the Subset Selection Problem
G2.7.6 Distance-Based Methods
G2.7.7 Clustering Methods
G2.7.8 Cell-Based Partitioning
G2.7.9 Optimization of Diversity Function
G2.7.10 Example of Selection of Diverse Compounds
G2.7.11 The Input
G2.7.12 Normalization of the Data
G2.7.13 The Results

G2.8. Reagent Selection
G2.8.1 Cherry Picking Limitations
G2.8.2 Optimization of Diversity and Synthetic Issues
G2.8.3 Example of Optimization Algorithm
G2.8.4 Selecting Reagents is a Complex Issue

G2.9. Increasing the Quality of a Library (ADMET)
G2.9.1 Failures in Clinical Trials
G2.9.2 Failure in Drug Discovery
G2.9.3 Early Integration of ADME Properties in Drug Discovery
G2.9.4 The Drug-Like Approach and the Predictive Approach
G2.9.5 The Drug-Like Approach: Identify Poor Candidates
G2.9.6 Structural Mimicry and ADME Properties Mimicry
G2.9.7 The Rule-Based Approach
G2.9.8 Lipinski Rules (Rule of 5)
G2.9.9 MW Distribution
G2.9.10 LogP Distribution
G2.9.11 H-Bond Donor Distribution
G2.9.12 H-Bond Acceptor Distribution
G2.9.13 Total Analysis
G2.9.14 Other Rules
G2.9.15 Remove Too Flexible Molecules
G2.9.16 Remove Molecules with too Many Rings
G2.9.17 Remove Compounds with Known Toxic Moieties
G2.9.18 Remove Compounds with Reactive Groups
G2.9.19 Remove False-Positive Hits
G2.9.20 Remove Poorly Soluble Compounds
G2.9.21 Filter on Heteroatoms and Non-Organic Molecules
G2.9.22 Remove Molecules with Multiple Chiral Centers
G2.9.23 Tailor-Made Filtering
G2.9.24 Assisting Medicinal Chemist Expertise and Intuition
G2.9.25 Privileged Drug-Like Scaffolds
G2.9.26 Building Blocks Based on Known Drugs
G2.9.27 The Computational Approach
G2.9.28 Prediction of Absorption
G2.9.29 Prediction of Metabolism
G2.9.30 Prediction of Distribution and Elimination
G2.9.31 Prediction of Toxicity
G2.9.32 Lack of Standardized ADMET Databases
G2.9.33 Available Software

G2.10. Example of Library Analysis
G2.10.1 Common Treatments in Library Analysis
G2.10.2 Import of Libraries in a Common Database
G2.10.3 Cleaning Up the Database
G2.10.4 Set Stereoisomers
G2.10.5 Assessing the Uniqueness of a Library
G2.10.6 Drug-Likeness: Lipinski Rule of 5
G2.10.7 Drug-Likeness: Other Filters
G2.10.8 Diversity Analysis with Molecular Descriptors
G2.10.9 Diversity Analysis with Fingerprints and PCA
G2.10.10 Final Results

G2.11. CHAPTER QUIZZES (Available only in Teaching Package)
G2.11.1 Quiz 1
G2.11.2 Quiz 2
G2.11.3 Quiz 3
G2.11.4 Quiz 4
G2.11.5 Quiz 5
G2.11.6 Quiz 6
G2.11.7 Quiz 7
G2.11.8 Quiz 8
G2.11.9 Quiz 9
G2.11.10 Quiz 10
G2.11.11 Quiz 11
G2.11.12 Quiz 12
G2.11.13 Quiz 13
G2.11.14 Quiz 14
G2.11.15 Quiz 15
G2.11.16 Quiz 16
G2.11.17 Quiz 17
G2.11.18 Quiz 18
G2.11.19 Quiz 19
G2.11.20 Quiz 20
G2.11.21 Quiz 21
G2.11.22 Quiz 22
G2.11.23 Quiz 23
G2.11.24 Quiz 24
G2.11.25 Quiz 25
G2.11.26 Quiz 26
G2.11.27 Quiz 27
G2.11.28 Quiz 28
G2.11.29 Quiz 29
G2.11.30 Quiz 30
G2.11.31 Quiz 31
G2.11.32 Quiz 32
G2.11.33 Quiz 33
G2.11.34 Quiz 34
G2.11.35 Quiz 35
G2.11.36 Quiz 36
G2.11.37 Quiz 37
G2.11.38 Quiz 38
G2.11.39 Quiz 39
G2.11.40 Quiz 40
G2.11.41 Quiz 41
G2.11.42 Quiz 42
G2.11.43 Quiz 43
G2.11.44 Quiz 44
G2.11.45 Quiz 45
G2.11.46 Quiz 46
G2.11.47 Quiz 47
G2.11.48 Quiz 48
G2.11.49 Quiz 49
G2.11.50 Quiz 50
G2.11.51 Quiz 51
G2.11.52 Quiz 52
G2.11.53 Quiz 53
G2.11.54 Quiz 54
G2.11.55 Quiz 55
G2.11.56 Quiz 56
G2.11.57 Quiz 57
G2.11.58 Quiz 58
G2.11.59 Quiz 59
G2.11.60 Quiz 60
G2.11.61 Quiz 61
G2.11.62 Quiz 62
G2.11.63 Quiz 63
G2.11.64 Quiz 64
G2.11.65 Quiz 65
G2.11.66 Quiz 66
G2.11.67 Quiz 67
G2.11.68 Quiz 68
G2.11.69 Quiz 69
G2.11.70 Quiz 70
G2.11.71 Quiz 71
G2.11.72 Quiz 72
G2.11.73 Quiz 73
G2.11.74 Quiz 74
G2.11.75 Quiz 75
G2.11.76 Quiz 76
H. PEPTIDOMIMETICS

H1. PEPTIDOMIMETICS

H1.1. Introduction
- H1.1.1 Key Peptides in Drug Discovery
- H1.1.2 Definition of Peptidomimetics
- H1.1.3 Problems with Peptide Molecules
- H1.1.4 The Aim of Peptidomimetics
- H1.1.5 Typical Peptidomimicry Projects

H1.2. Structural Modifications
- H1.2.1 Range of Structural Modifications
- H1.2.2 Side Chain Mimicry
- H1.2.3 Short-Range Cyclizations (Bridging)
- H1.2.4 Long Range Cyclizations
- H1.2.5 Mimicking the Peptidic Bond
- H1.2.6 Browser of Bioisosteric Replacements
- H1.2.7 Cα Modifications
- H1.2.8 Tetra Substituted Amino Acids
- H1.2.9 Azapeptides
- H1.2.10 Extension of the Peptide Chain
- H1.2.11 β-Peptides

H1.3. Two Alternative Routes
- H1.3.1 From Peptides to Non-peptidic Molecules
- H1.3.2 First Route: Successive Modifications of Peptide
- H1.3.3 Depeptidization
- H1.3.4 Problems with Peptide-Based Analogs
- H1.3.5 Example of Reduction of Peptide Character
- H1.3.6 A-72517 is a Mimic of Angiotensinogen
- H1.3.7 Dead End in the Development of A-72517
- H1.3.8 Second Route: De Novo Design of Non Peptide Mimics
- H1.3.9 Operational Framework
- H1.3.10 Which Route Should be Used?

H1.4. The Challenge of Peptidomimicry
- H1.4.1 Challenges in Peptide Modifications
- H1.4.2 Challenges in Non-Peptidic Mimicry
- H1.4.3 Perspectives in Peptidomimetics

H1.5. CHAPTER QUIZZES (Available only in Teaching Package)
- H1.5.1 Quiz 1
- H1.5.2 Quiz 2
- H1.5.3 Quiz 3
- H1.5.4 Quiz 4
- H1.5.5 Quiz 5
- H1.5.6 Quiz 6
- H1.5.7 Quiz 7
- H1.5.8 Quiz 8
- H1.5.9 Quiz 9
- H1.5.10 Quiz 10
H2. PEPTIDOMIMETICS EXAMPLES

- H2.1. TRH Mimicry
 - H2.1.1 Ro-24-9975 is a Non-Peptidic Mimic of TRH
 - H2.1.2 TRH Browser

- H2.2. Inhibitors of HLE
 - H2.2.1 Inhibition of Human Leukocyte Elastase
 - H2.2.2 Problem of Peptide-Based ICI-200,880
 - H2.2.3 TFMK as a Reference
 - H2.2.4 Analysis of the Binding of TFMK
 - H2.2.5 Summary of the Analyses
 - H2.2.6 Design of a New Pyridone Framework
 - H2.2.7 Optimization of the Pyridone Series
 - H2.2.8 Browser of HLE Inhibitors

- H2.3. Renin Inhibitors
 - H2.3.1 The Renin-Angiotensin System Cascade
 - H2.3.2 The First Generation of Renin Inhibitors
 - H2.3.3 The Second Generation of Renin Inhibitors
 - H2.3.4 Low Oral Absorption of CGP-38560
 - H2.3.5 Bioactive Conformation of CGP-38560
 - H2.3.6 Strategy for the Design of Non-Peptidic Inhibitors
 - H2.3.7 Successful Design of a Non-Peptidic Inhibitor
 - H2.3.8 Optimization of the Tetrahydro-Quinoline Inhibitor
 - H2.3.9 A Third Generation of Renin Inhibitors

- H2.4. Substance P Antagonists
 - H2.4.1 Substance P : a Ligand of CNS Receptors
 - H2.4.2 The Successful Discovery of SP Antagonists
 - H2.4.3 A Phe-Phe Mimic of Substance P
 - H2.4.4 Mimicry of CGP-47899 and Substance P
H2.5. Angiotensin-II Antagonists
- H2.5.1 Antagonists of Angiotensin-II Receptors
- H2.5.2 Losartan as a Mimic of Angiotensin-II
- H2.5.3 Browser of Angiotensin-II Antagonists

H2.6. Inhibitors of HIV-1 Protease
- H2.6.1 HIV-1 Protease Inhibition
- H2.6.2 The Peptide Problem
- H2.6.3 Database Searching for Non-Peptidic Scaffolds
- H2.6.4 Analysis of the Content of the Hit
- H2.6.5 Design of Cyclic Urea Scaffold
- H2.6.6 XK-263 is a Non-Peptidic Mimic of A-77003

H2.7. δ-Opioid Receptor Agonists
- H2.7.1 Therapeutic utility of δ-Opioid Receptor Agonists
- H2.7.2 Typical Peptide δ-Opioid Receptor Agonists
- H2.7.3 Typical Non-Peptide δ-Opioid Receptor Agonists
- H2.7.4 Pharmacophore for δ-Opioid Receptor Agonists
- H2.7.5 SAR, NMR and Modeling of the DPDPE series
- H2.7.6 Bioactive Conformation of DPDPE
- H2.7.7 Scaffold Design of Non-Peptide Antagonists:
 - H2.7.8 Refinement of the Scaffold and Substituents
 - H2.7.9 The First Series Synthesized

H2.8. Farnesyltransferase Inhibitors
- H2.8.1 Farnesyltransferase, a Target in Oncology
- H2.8.2 X-ray Structure of FTase with a Tetrapeptide
- H2.8.3 Binding Interactions of CAAX Substrate for FTase
- H2.8.4 4-Aminobenzoic Spacer to Replace Val-Ile Dipeptide
- H2.8.5 The Simple Aromatic Central Ring is not Sufficient
- H2.8.6 Analogs with Significantly Enhanced Potency
- H2.8.7 Terphenyl to Replace the Central Val-Ile Dipeptide
- H2.8.8 Potent and Selective Farnesyltransferase Inhibitor
- H2.8.9 Browser of Farnesyltransferase Inhibitors

H2.9. Motilin Receptor Antagonists
- H2.9.1 Motilin Receptor Antagonists
- H2.9.2 Motilin Receptor and Motilin Peptide
- H2.9.3 Structural Analyses on Motilin
- H2.9.4 Bioactive Conformation of Motilin
- H2.9.5 Biologically Relevant Residues of Motilin
- H2.9.6 The Motilin Pharmacophore
- H2.9.7 RWJ-64583: a Trisubstituted Cyclopentene Lead
- H2.9.8 The Three-point Pharmacophore and RWJ-64583
- H2.9.9 Optimization of the Initial Lead Molecule

H2.10. MC4R Melanocortin Receptor Agonists
- H2.10.1 Melanocortin Receptors
- H2.10.2 Minimal Peptide Sequence for Activating the Receptor
- H2.10.3 Strategy for the Design of New Agonists
- H2.10.4 Molecular Geometry of the Cyclic Peptide
- H2.10.5 Design of Molecules with a Cyclohexane Core
- H2.10.6 Cis and Trans Cyclohexane Isomers
- H2.10.7 Molecular Geometries of the Cis and Trans Isomers
H2.10.8 Overlap of Molecule 2 with the Peptidic Agonist
H2.10.9 Discovery of a Nanomolar Non-Peptidic Agonist

H2.11. Antagonists of the Mdm2-p53 Interaction
- H2.11.1 Antagonists of the Mdm2-p53 Interaction
- H2.11.2 Mdm2 Bound to p53 Transactivation Domain
- H2.11.3 Systematic SAR Studies
- H2.11.4 3D Structure of the Pharmacophore
- H2.11.5 The Novartis 5 nM Peptide-Like Antagonist
- H2.11.6 Problems with the Peptide-Based Antagonists
- H2.11.7 The Bicyclo [2.2.1]-Heptane Scaffold
- H2.11.8 Designed Scaffold Aligned with the Pharmacophore

H2.12. Somatostatin Mimicry
- H2.12.1 Somatostatin Structure
- H2.12.2 Somatostatin Receptors
- H2.12.3 The Somatostatin Pharmacophore
- H2.12.4 Successful Reduction of the Somatostatin
- H2.12.5 Mimics of L-363,377 with Database Searching
- H2.12.6 Results of the Database Searching
- H2.12.7 A Good Mimic of the Reference Cyclic Peptide
- H2.12.8 Development of a Combinatorial Chemistry Approach
- H2.12.9 Combinatorial Chemistry Results
- H2.12.10 An Integrated Approach to Drug Discovery

I. ADME PROPERTIES AND PREDICTIONS

I.1. ADME PROPERTIES

I.1.1. Introduction
- I.1.1.1 Therapeutics
- I.1.1.2 Pharmacokinetics
- I.1.1.3 Pharmacodynamics
- I.1.1.4 Dose-Response Relationships
- I.1.1.5 The Drug Route
- I.1.1.6 Absorption
- I.1.1.7 Distribution
- I.1.1.8 Metabolism
- I.1.1.9 Excretion
- I.1.1.10 Bioavailability
- I.1.1.11 Dose-Response Relationship
- I.1.1.12 Translocation of Drugs
- I.1.1.13 Cell Membrane Architecture
- I.1.1.14 Passive Diffusion
- I.1.1.15 Endocytosis and Exocytosis
- I.1.1.16 Carrier-Mediated Transport

I.1.2. Absorption
- I.1.2.1 Drug Absorption
- I.1.2.2 Incomplete Absorption of Drug Dose
- I.1.2.3 Routes of Administration
- I.1.2.4 Properties of Drugs that Influence Absorption
I.2.5 Lipophilicity and Membrane Penetration
I.2.6 pKa of a Drug and pH
I.2.7 Water Solubility and Dissolution

I.3. Distribution
- I.3.1 Drug Distribution
- I.3.2 Drug Translocation and Distribution
- I.3.3 Site of Action
- I.3.4 Distribution is to Many Body Sites
- I.3.5 Apparent Volume of Distribution
- I.3.6 Vd and Drug Distribution Patterns
- I.3.7 Meaning of Vd
- I.3.8 Factors that Influence Drug Distribution
- I.3.9 Perfusion and Membrane Permeability
- I.3.10 Binding to Plasma Proteins
- I.3.11 Accumulation in Organs and Tissues
- I.3.12 Ion Trapping
- I.3.13 Biological Barriers (BBB, Placental, Blood-Testis)
- I.3.14 Distribution as Equilibrium State

I.4. Metabolism
- I.4.1 Metabolism of Foreign Substances (Xenobiotics)
- I.4.2 Metabolic Reactions
- I.4.3 Pathways of Metabolism
- I.4.4 Chemistry of Phase I Metabolism
- I.4.5 Chemistry of Phase II Metabolism
- I.4.6 Metabolic Activation and Toxification
- I.4.7 Sites of Drug Metabolism
- I.4.8 Drug Metabolizing Enzymes
- I.4.9 Cytochrome P-450 (CYP)
- I.4.10 Oxidative Metabolism by Cytochrome P-450 Enzymes
- I.4.11 Mechanism of Cytochrome P-450 Oxidation
- I.4.12 Metabolic Variability
- I.4.13 Genetic Polymorphisms
- I.4.14 Age
- I.4.15 A Drug Metabolism Inhibited by Another Drug
- I.4.16 Metabolism Increased by Enzymatic Induction
- I.4.17 Metabolism and Drug Design
- I.4.18 Hard Drugs
- I.4.19 Removing
- I.4.20 Hiding
- I.4.21 Stabilizing
- I.4.22 Soft Drugs
- I.4.23 Topical Use
- I.4.24 Ultrashort Use
- I.4.25 Oral Use
- I.4.26 Pro-Drugs
- I.4.27 Oral Absorption
- I.4.28 Prolonged Activity
- I.4.29 Improved Formulation
- I.4.30 BBB Penetration
- I.4.31 Tumor Targeting
I.5. Excretion
- I.5.1 Excretion
- I.5.2 Renal Excretion
- I.5.3 Glomerular Filtration
- I.5.4 Tubular Secretion
- I.5.5 Tubular Reabsorption
- I.5.6 Biliary Excretion
- I.5.7 Other Excretion Routes
- I.5.8 Clearance
- I.5.9 Half-life

I.6. ADME in Drug Design
- I.6.1 Failures in Drug Development
- I.6.2 Challenge of R&D Planning
- I.6.3 High-Throughput ADME Evaluations
- I.6.4 In Silico Prediction of ADME Properties
- I.6.5 Lipinski Rules and Drug-Like Properties
- I.6.6 More Insights into ADME Predictions

J. CHEMINFORMATICS

J1. CHEMINFORMATICS, PRINCIPLES AND APPLICATIONS

J1.1. Introduction
- J1.1.1 What is Cheminformatics ?
- J1.1.2 Cheminformatics or Chemoinformatics ?
- J1.1.3 Cheminformatics and Drug Discovery
- J1.1.4 Cheminformatics: Integration of Three Disciplines
- J1.1.5 Historical Background of Pharmaceutical Research
- J1.1.6 Molecular Modeling
- J1.1.7 Chemical Information
- J1.1.8 Coupling Modeling and Chemical Information
- J1.1.9 The Data Analysis Contribution
- J1.1.10 Example of Successful Integration
- J1.1.11 Definitions of Cheminformatics
- J1.1.12 Cheminformatics vs. Structural Bioinformatics
- J1.1.13 Encoding Molecules
- J1.1.14 Development of Algorithms
- J1.1.15 Facilitate Multidisciplinary Communication

J1.2. Molecular Modeling
- J1.2.1 Pharmacophore Mapping
- J1.2.2 The Concept of 3D Pharmacophores
- J1.2.3 Pharmacophoric Structural Elements
- J1.2.4 What is Pharmacophore Mapping ?
- J1.2.5 Manual Pharmacophore Mapping
- J1.2.6 Derivation of Pharmacophore Hypotheses
- J1.2.7 Steps in Deriving a Pharmacophore
- J1.2.8 The Initial Training Set
- J1.2.9 Generation of Conformers
- J1.2.10 Which Combination of Structural Elements?
J1.2.11 Manual Method
J1.2.12 Example of Tricyclic Antidepressants
J1.2.13 Design of Non-Tricyclic Structures
J1.2.14 Automated Methods
J1.2.15 Automated Methods: the Conformational Issue
J1.2.16 Common Use of a Pharmacophore
J1.2.17 Pharmacophore Fingerprints
J1.2.18 Pharmacophore Databases
J1.2.19 Combination with Other Methods
J1.2.20 Combining Pharmacophore and Shape
J1.2.21 Structure-Based Pharmacophore Mapping
J1.2.22 Structure-Based Pharmacophore vs. Docking
J1.2.23 The Ludi Program
J1.2.24 LigandScout
J1.2.25 Example of Pharmacophore Mapping
J1.2.26 Initial Data Sets
J1.2.27 Pharmacophore Models
J1.2.28 Exploitation of the Pharmacophores Generated
J1.2.29 Programs for Pharmacophore Mapping

J1.3. Chemical Information
J1.3.1 Molecule Searching
J1.3.2 Components of an Information System
J1.3.3 Database Query Languages
J1.3.4 Quest for Information and Ideas
J1.3.5 Quest for Information
J1.3.6 Identifying Compounds
J1.3.7 Searching by Name
J1.3.8 Problems when Searching by Name
J1.3.9 Searching by CAS Registry Number
J1.3.10 Searching by 2D Molecular Structure
J1.3.11 Searching by SMILE String
J1.3.12 Searching by Formula
J1.3.13 Information Delivered by the Search
J1.3.14 Types of Information
J1.3.15 Quest for Ideas
J1.3.16 Constrained Search
J1.3.17 Language to Define Constraints Associated to a Query
J1.3.18 Define Constraints for Substituents
J1.3.19 Substituent Control by Explicit Hydrogens
J1.3.20 Substituent Control by Substitution Numbers
J1.3.21 Define Constraints for Atom Types
J1.3.22 Define Constraints for Bonds
J1.3.23 Define Constraints for Rings
J1.3.24 Define Constraints for Stereochemistry
J1.3.25 Define Constraints for Tautomers
J1.3.26 Define 3D Constraints
J1.3.27 Similarity Search
J1.3.28 Structural Keys
J1.3.29 Example of Similarity Measure
J1.3.30 Similar Name
J1.3.31 Focused and Diverse Approaches
■ J1.3.32 Maximizing Knowledge with Information Systems
■ J1.3.33 Filtering Results
■ J1.3.34 Boolean Operations with Different Sets of Hits

■ J1.4. Data Analysis
■ J1.4.1 Introduction to QSAR Modeling
■ J1.4.2 QSAR Definition
■ J1.4.3 The QSPR/QSAR Problem
■ J1.4.4 SAR Definition
■ J1.4.5 Qualitative Class Assignment of New Chemicals
■ J1.4.6 Three Prerequisites for QSAR Modeling
■ J1.4.7 Classical Hansch Equation
■ J1.4.8 Molecular Descriptors Calculations
■ J1.4.9 Theoretical Molecular Descriptors
■ J1.4.10 Chemometric Approaches to QSAR Modeling
■ J1.4.11 Development of Quantitative Models
■ J1.4.12 Identify the Best Subset of Descriptors
■ J1.4.13 Variable Selection: Independent Variables X
■ J1.4.14 Variable Selection: Dependent Variables Y
■ J1.4.15 Characteristics of QSAR Models
■ J1.4.16 Example of QSAR Model
■ J1.4.17 Chemical Domain of Applicability
■ J1.4.18 Application Domain from Williams plot
■ J1.4.19 Validity Check and Predictivity
■ J1.4.20 Validation Parameters of QSAR Models
■ J1.4.21 Statistic of QSAR Classification Models
■ J1.4.22 Classification Methods
■ J1.4.23 Scheme for Predictive QSAR Modeling
■ J1.4.24 Reversible Decoding of Molecular Descriptors
■ J1.4.25 Interpretation of Molecular Descriptors
■ J1.4.26 Predictive and Descriptive QSAR Models
■ J1.4.27 OECD Principles for QSAR Models
■ J1.4.28 Main Applications of QSAR Predictions

○ J3. 3D DATABASE SEARCHING

■ J3.1. What is 3D Searching?
■ J3.1.1 Importance of the 3D
■ J3.1.2 What is 3D Searching?
■ J3.1.3 Components of a 3D Searching Program
■ J3.1.4 3D Database
■ J3.1.5 Search Hypothesis
■ J3.1.6 Converting a Search Hypothesis into a Query
■ J3.1.7 Processing the Query

■ J3.2. Typical Uses of 3D Searching
■ J3.2.1 Typical Uses of 3D Searching
■ J3.2.2 Test a Pharmacophore Hypothesis
■ J3.2.3 Find Hits that Fit the Volume of Active Molecules
■ J3.2.4 Revealing Bioactive Conformation of a Flexible Molecule
■ J3.2.5 "Lead-Hop" to a New Core
■ J3.2.6 Design a Library for HTS
J3.2.7 Structural Analyses on Experimental 3D Databases
J3.2.8 Generate Ideas

J3.3. Types of 3D Searches
J3.3.1 Types of 3D Searches
J3.3.2 Geometric Searching
J3.3.3 Typical Geometric Objects
J3.3.4 Typical Properties Considered
J3.3.5 Point at an Atom
J3.3.6 Centroid
J3.3.7 Extension Point
J3.3.8 Line
J3.3.9 Plane
J3.3.10 Geometric Constraints
J3.3.11 Distance Constraints
J3.3.12 Angle Constraints
J3.3.13 Torsion Angle Constraints
J3.3.14 Excluded Volumes
J3.3.15 Sources of Constraints for 3D Searching
J3.3.16 Constraints from a 3D Pharmacophore
J3.3.17 Constraints from a Protein Active Site
J3.3.18 Constraints from a Bioactive Conformation
J3.3.19 Constraints to Probe the Bioactive Conformation
J3.3.20 Shape Searching
J3.3.21 Bioactive Conformation as a Source of Shape
J3.3.22 Ensemble of Active Molecules as a Source of Shape
J3.3.23 Active Site as a Source of Shape
J3.3.24 Full versus Partial Match
J3.3.25 Complex Query Combination

J3.4. Constructing 3D Databases
J3.4.1 Constructing 3D Databases
J3.4.2 Sources of Compounds for Searching
J3.4.3 Database of the Corporate Collection
J3.4.4 Databases of Vendor Compounds
J3.4.5 Database of Virtual Compounds
J3.4.6 Generating 3D Structures
J3.4.7 Experimental 3D Structures
J3.4.8 Computationally Generated 3D Structures
J3.4.9 Cleaning up 2D Input
J3.4.10 CONCORD
J3.4.11 CORINA
J3.4.12 ConFirm and Omega
J3.4.13 Information Stored for a Molecule in the Database
J3.4.14 Coordinates
J3.4.15 Bitmaps or Fingerprints of Typical Search Constraints

J3.5. Programs for 3D Searching
J3.5.1 Programs for 3D Searching
J3.5.2 ConQuest
J3.5.3 CAVEAT
J3.5.4 UNITY
J3.5.5 ISIS
J3.5.6 Catalyst
J3.5.7 FlexS
J3.5.8 ROCS

J3.6. CHAPTER QUIZZES (Available only in Teaching Package)
- J3.6.1 Quiz 1
- J3.6.2 Quiz 2
- J3.6.3 Quiz 3
- J3.6.4 Quiz 4
- J3.6.5 Quiz 5
- J3.6.6 Quiz 6
- J3.6.7 Quiz 7
- J3.6.8 Quiz 8
- J3.6.9 Quiz 9
- J3.6.10 Quiz 10
- J3.6.11 Quiz 11
- J3.6.12 Quiz 12
- J3.6.13 Quiz 13
- J3.6.14 Quiz 14
- J3.6.15 Quiz 15
- J3.6.16 Quiz 16
- J3.6.17 Quiz 17
- J3.6.18 Quiz 18
- J3.6.19 Quiz 19
- J3.6.20 Quiz 20
- J3.6.21 Quiz 21
- J3.6.22 Quiz 22

J4. EXAMPLES OF 3D DATABASE SEARCHING

J4.1. Dopamine Transporter Inhibitors
- J4.1.1 The Dopamine Transporter Target
- J4.1.2 Methodology: 3D Database Searching
- J4.1.3 First Pharmacophore
- J4.1.4 3D Searching Results with the First Pharmacophore
- J4.1.5 Piperidinol Hit
- J4.1.6 Optimization of the Piperidinol Hit
- J4.1.7 Quinuclidine Hit
- J4.1.8 Optimization of the Quinuclidine Hit
- J4.1.9 Phenyl-4 Piperidine Hit
- J4.1.10 Optimization of the Phenyl-4 Piperidine Hit
- J4.1.11 Challenging the First Pharmacophore
- J4.1.12 Structural Analyses of the Quinuclidine Hit
- J4.1.13 Modeling Analyses: C=O Not Necessary!
- J4.1.14 Browser Associated to the First Pharmacophore
- J4.1.15 What Can Be Learned So Far?
- J4.1.16 Second Pharmacophore
- J4.1.17 Characteristics of the Second Pharmacophore
- J4.1.18 3D Searching with the Second Pharmacophore
- J4.1.19 Optimization of the Pyrrolidine Hit
- J4.1.20 What Can Be Learned So Far?
J4.1.21 Browser Associated to the Second Pharmacophore
J4.1.22 Third Pharmacophore
J4.1.23 Bioactive Form of Mazindol
J4.1.24 Characteristics of the Third Pharmacophore
J4.1.25 3D Searching with Third Pharmacophore
J4.1.26 Browser Associated to the Third Pharmacophore
J4.1.27 Fourth Pharmacophore
J4.1.28 Aligning Low Energy Conformers
J4.1.29 Characteristics of the Fourth Pharmacophore
J4.1.30 3D Searching with the Fourth Pharmacophore
J4.1.31 Optimization of the Substituted Pyridine Hit
J4.1.32 Browser Associated to the Fourth Pharmacophore
J4.1.33 Summary

J4.2. Non-Sugar Antagonists of Selectin
 J4.2.1 Reference Compound
 J4.2.2 Initial SAR Analyses
 J4.2.3 Pharmacophore Model
 J4.2.4 Results of 3D Searching
 J4.2.5 Optimization of the Diphenyl Ether Hit
 J4.2.6 Summary
 J4.2.7 Browser of Selectin Antagonists

J4.3. Non-Peptidic Cyclophilin Ligands
 J4.3.1 Reference Compound: Cyclosporin A
 J4.3.2 The Bioactive Conformation of Cyclosporin A
 J4.3.3 Pharmacophore Model
 J4.3.4 Results of 3D Searching
 J4.3.5 Superposition of the Hit with Cyclosporin-A
 J4.3.6 Optimization of Initial Hit
 J4.3.7 Browser of Non-Peptidic Cyclophilin Ligands

J4.4. Ligands of the Dopamine D3 Receptor
 J4.4.1 Reference Compounds
 J4.4.2 Pharmacophore Model
 J4.4.3 Model of the Dopamine D3 Receptor
 J4.4.4 Combined Pharmacophore and Structure-Based Searching
 J4.4.5 Results of 3D Searching
 J4.4.6 Summary
 J4.4.7 Browser of Dopamine D3 Receptor Ligands

J4.5. Inhibitors of HIV-1 Protease
 J4.5.1 HIV-1 Protease Inhibition
 J4.5.2 The Peptide Problem
 J4.5.3 Database Searching for Non-Peptidic Scaffolds
 J4.5.4 The Terphenyl Derivative Hit
 J4.5.5 Analysis of the Content of the Hit
 J4.5.6 Design of Cyclic Urea Scaffold
 J4.5.7 XK-263 is a Non-Peptidic Mimic of A-77003
 J4.5.8 Summary

J5. MOLECULAR SIMILARITY
J5.1. Introduction
- J5.1.1 Similarity and Complementarity-Based Drug Design
- J5.1.2 Comparing Molecules: a Central Issue in Drug Discovery
- J5.1.3 The Molecular Similarity Principle
- J5.1.4 Subjectivity of the Similarity Concept
- J5.1.5 What can be Similar in Molecules?
- J5.1.6 2D-Structure Similarity
- J5.1.7 Shape Similarity
- J5.1.8 Surface Physicochemical Similarity
- J5.1.9 H-Bond Similarity
- J5.1.10 Absence of Particular Features
- J5.1.11 Pharmacophore Similarity
- J5.1.12 Comparing Molecular Characteristics
- J5.1.13 Terminology: Similarity Attributes
- J5.1.14 Relevant Characteristics: What is Important?
- J5.1.15 Relativity of Relevant Properties
- J5.1.16 Interpretable Characteristics
- J5.1.17 Global and Local Characteristics
- J5.1.18 Maximizing Similarity: Object Alignments
- J5.1.19 The Psychology of Similarity
- J5.1.20 Molecular Similarity in Medicinal Chemistry Era
- J5.1.21 Cheminformatics

J5.2. Medicinal Chemistry Approaches Based on the Similarity Principle
- J5.2.1 Chemical Modifications
- J5.2.2 Bioisosteric Replacements
- J5.2.3 Molecular Mimicry
- J5.2.4 Mee-too-ism
- J5.2.5 Peptidomimetics
- J5.2.6 Lead-Like and Drug-Like Approaches

J5.3. Similarity Searching in Database
- J5.3.1 Exact and Substructure Searching
- J5.3.2 Similarity Searching
- J5.3.3 Semi-Manual Similarity Searching
- J5.3.4 Similarity Concept and Creativity
- J5.3.5 Output of Similarity Searching
- J5.3.6 Broad Range of Applications
- J5.3.7 Substructure & Similarity Searching Complementarities
- J5.3.8 General Requirements of a Method
- J5.3.9 Make Molecules Accessible to the Computer
- J5.3.10 Need of Methods to Measure Similarity
- J5.3.11 Apply an Algorithm

J5.4. Molecular Descriptors: Make Molecules Accessible to the Computer
- J5.4.1 The Concept of "Molecular Descriptors"
- J5.4.2 Selection of Relevant Descriptors
- J5.4.3 High-Dimensionality Space of the Molecular Descriptors
- J5.4.4 Example of Selection of Relevant Descriptors
- J5.4.5 Binary and Numerical Descriptors
- J5.4.6 Experimental and Calculated Molecular Descriptors
- J5.4.7 Predefined vs. Algorithmically Defined Descriptors
- J5.4.8 Possible Classification of Molecular Descriptors
J5.5. Examples of Molecular Descriptors
- J5.5.1 1D Descriptors: Single Numbers or Sequences
- J5.5.2 Topological Indices
- J5.5.3 Electrotopological Descriptors
- J5.5.4 Linear Representations of Molecules
- J5.5.5 2D Descriptors: Fragments and Substructures
- J5.5.6 Spectra-Derived Descriptors
- J5.5.7 Graph-Based Multiple Point Pharmacophores
- J5.5.8 Reduced Graph and Feature Trees
- J5.5.9 Ghose and Crippen Descriptors
- J5.5.10 3D Descriptors
- J5.5.11 Field-Based Descriptors
- J5.5.12 Multiple-Point Pharmacophores
- J5.5.13 Surface-Based Descriptors
- J5.5.14 4D Chirality Descriptors
- J5.5.15 Virtual Affinity Fingerprints
- J5.5.16 BCUT Descriptors

J5.6. Comparing Molecules: Similarity Coefficients
- J5.6.1 Methods to Quantify Similarity
- J5.6.2 Similarity Coefficients of Relevant Properties
- J5.6.3 Binary and Distance-Based Formulas
- J5.6.4 Distance Coefficients
- J5.6.5 Similarity Coefficients
- J5.6.6 Symmetry Problems in Similarity Analysis
- J5.6.7 Symmetrical vs. Asymmetrical Similarity in Psychology
- J5.6.8 Does the Absence of Features Indicate Similarity?
- J5.6.9 Examples of Similarity and Distance Coefficients
- J5.6.10 The Tanimoto Coefficient
- J5.6.11 Dice and Cosine Similarity Coefficients
- J5.6.12 Tversky Similarity Coefficient
- J5.6.13 Some Common Distance Coefficients

J5.7. Examples of Direct Use of Similarity Coefficients
- J5.7.1 Searching Molecules with Similar Properties
- J5.7.2 Searching Information from Similar Molecules
- J5.7.3 Knowing a Pharmacophore, Search for Novel Molecules
- J5.7.4 Example of a Fuzzy Pharmacophore
- J5.7.5 Validation of Novelty
- J5.7.6 Reducing a Virtual Library to a Practical Size
- J5.7.7 Peptidomimetics
- J5.7.8 Compounds that Fit the Shape of an Active Site
- J5.7.9 Find a Synthetic Route
- J5.7.10 Filtering Undesired Hits
- J5.7.11 Clustering of Molecules

J5.8. Development of Computational Models
- J5.8.1 Development of a Structure-Property Model
- J5.8.2 Deriving Knowledge from Distances and Properties
- J5.8.3 Molecules in the Space of the Descriptors
- J5.8.4 QSAR and 3D-QSAR
- J5.8.5 QSPR - Quantitative Structure-Property Relationships
- J5.8.6 Intelligent Machine Learning Models
J5.8.7 Binary Kernel Discrimination
J5.8.8 Artificial Neural Networks
J5.8.9 Support Vector Machines (SVMs)
J5.8.10 Binary QSAR and Naive Bayes Classifier
J5.8.11 Rule-Based Approaches
J5.8.12 Decision Trees

J5.9. Practical Applications of Structure-Property Models
J5.9.1 Example of a 3D-QSAR Model
J5.9.2 Molecular Similarity: Models of ADME/Tox Predictions
J5.9.3 'A' - Absorption: Does a Drug Work Orally?
J5.9.4 'D' - Distribution: Where Does the Drug Go in the Body?
J5.9.5 'M' - Metabolism: The Drug's Fate
J5.9.6 'E' - Elimination: The Drug Says Good-Bye
J5.9.7 'Tox' - Toxicity: Side-Effects
J5.9.8 Prediction of Solubility
J5.9.9 Prediction of Melting Points

J5.10. Important Properties of Molecular Descriptors and Similarity Coefficients
J5.10.1 Neighborhood Behavior
J5.10.2 Back-Projectability
J5.10.3 Validation and Information Content of Descriptors
J5.10.4 Properties of Binary Fingerprints
J5.10.5 Folding of Fingerprints
J5.10.6 The Concept of Binning
J5.10.7 The Concept of "Fuzzy" Descriptors
J5.10.8 Size-Bias of the Tanimoto Similarity Coefficient
J5.10.9 Size-Bias: Favoring Large Molecules
J5.10.10 2D vs. 3D Descriptors

J5.11. Choice of the Best Method for Calculating Similarity Coefficients
J5.11.1 Unique Content of Each Similarity Coefficient?
J5.11.2 Clustering Similarity Coefficients
J5.11.3 Consensus Scoring: Asking a Panel of Experts
J5.11.4 Why Does Consensus Scoring Improve the Results?
J5.11.5 What Algorithms Exist for Consensus Scoring?

J5.12. Limitations of the Concept of "Molecular Similarity"
J5.12.1 Limitation of Ligand-Based Approaches
J5.12.2 Example of Ligand-Based Approach Limitation
J5.12.3 Limitation Due to Extrapolations
J5.12.4 Limitation Due to Pitfalls in interpolations
J5.12.5 Principle of Continuity
J5.12.6 Discontinuity in Molecular Recognition
J5.12.7 Bumps
J5.12.8 Ligand Conformational Change
J5.12.9 Receptor Conformational Changes
J5.12.10 Flip in Binding Mode
J5.12.11 Discontinuity in Ligand Property
J5.12.12 pKa
J5.12.13 LogP
J5.12.14 Discontinuity in the Function of the Receptor

J5.13. Conclusions
J5.13.1 How Does "Molecular Similarity" Fare Today?
J5.13.2 How Many Chances of Being Active?
J5.13.3 Economic Rationale of Similarity-Based Methods
J5.13.4 Perspectives

J5.14. CHAPTER QUIZZES (Available only in Teaching Package)
J5.14.1 Quiz 1
J5.14.2 Quiz 2
J5.14.3 Quiz 3
J5.14.4 Quiz 4
J5.14.5 Quiz 5
J5.14.6 Quiz 6
J5.14.7 Quiz 7
J5.14.8 Quiz 8
J5.14.9 Quiz 9
J5.14.10 Quiz 10
J5.14.11 Quiz 11
J5.14.12 Quiz 12
J5.14.13 Quiz 13
J5.14.14 Quiz 14
J5.14.15 Quiz 15
J5.14.16 Quiz 16
J5.14.17 Quiz 17
J5.14.18 Quiz 18
J5.14.19 Quiz 19
J5.14.20 Quiz 20
J5.14.21 Quiz 21
J5.14.22 Quiz 22
J5.14.23 Quiz 23
J5.14.24 Quiz 24
J5.14.25 Quiz 25
J5.14.26 Quiz 26
J5.14.27 Quiz 27
J5.14.28 Quiz 28
J5.14.29 Quiz 29
J5.14.30 Quiz 30
J5.14.31 Quiz 31
J5.14.32 Quiz 32
J5.14.33 Quiz 33
J5.14.34 Quiz 34
J5.14.35 Quiz 35
J5.14.36 Quiz 36
J5.14.37 Quiz 37
J5.14.38 Quiz 38
J5.14.39 Quiz 39
J5.14.40 Quiz 40
J5.14.41 Quiz 41
J5.14.42 Quiz 42
J5.14.43 Quiz 43
J5.14.44 Quiz 44
J5.14.45 Quiz 45
J5.14.46 Quiz 46
K. GENERAL TOPICS

○ K1. GENERAL INTRODUCTION ON DRUGS
 ■ K1.1. What is a Drug
 ■ K1.1.1 What is a Drug?
 ■ K1.1.2 Improvement of Life Expectancy
K1.1.3 Origin of Active Principles
K1.1.4 Drug Formulation
K1.1.5 Multiple Names of Drugs
K1.1.6 Example of Multiple Names of a Drug
K1.1.7 Requirements for the Ideal Drug
K1.1.8 Safety
K1.1.9 Properties
K1.1.10 Compliance
K1.1.11 Pharmacology
K1.1.12 Metabolism and ADME
K1.1.13 Side Effects and Toxicity

K1.2. The Pharmaceutical Industry
K1.2.1 Drug Discovery and Development, a Long Process
K1.2.2 Drug Discovery and Drug Development
K1.2.3 One Million Studied for One to Reach the Market
K1.2.4 Pharmaceutical R&D, a High-Risk Undertaking
K1.2.5 The Time of Developing a New Drug
K1.2.6 The Cost of Developing a New Drug
K1.2.7 Reasons for Termination of Development

K1.3. Industry Focus Area
K1.3.1 Industry Focus Areas and Examples of Useful Drugs
K1.3.2 Cardiovascular System (CVS)
K1.3.3 Antiarrhythms
K1.3.4 Antihypertensive
K1.3.5 Vasodilatation
K1.3.6 Anticoagulants
K1.3.7 Antihyperlipidemic
K1.3.8 Anti-infective Agents
K1.3.9 Antibiotics
K1.3.10 Antiviral
K1.3.11 Antifungals
K1.3.12 Antimalarias
K1.3.13 Antituberculosis
K1.3.14 Central Nervous System (CNS) Agents
K1.3.15 Antipsychotics
K1.3.16 Cholinergic
K1.3.17 Parkinsonians
K1.3.18 Anticonvulsants
K1.3.19 Antidepressants
K1.3.20 Tranquilizers
K1.3.21 Adrenergic
K1.3.22 Gastro-Intestinal Drugs
K1.3.23 Antidiarrhea
K1.3.24 Laxatives
K1.3.25 Anti-emetics
K1.3.26 Anti-Ulcers
K1.3.27 Anti-Neoplastic (Anti Cancer) Agents
K1.3.28 Alkylating
K1.3.29 Antimetabolites
K1.3.30 Anti-neoplastic
- K1.3.31 Immunosuppressants
- K1.3.32 Taxoids
- K1.3.33 Respiratory Agents
- K1.3.34 Bronchodilators
- K1.3.35 Antihistamines
- K1.3.36 Antitussives
- K1.3.37 Anti-Rheumatism and Pain Agents
- K1.3.38 Anti-inflammatory
- K1.3.39 Anti-rheumatism
- K1.3.40 Analgesics
- K1.3.41 Anesthetics
- K1.3.42 Agents Against Metabolic Disorders
- K1.3.43 Antidiabetic
- K1.3.44 Antiosteoporotic
- K1.3.45 Thyroid Hormone
- K1.3.46 Steroids
- K1.3.47 Diagnostic Agents

K1.4. CHAPTER QUIZZES (Available only in Teaching Package)
- K1.4.1 Quiz 1
- K1.4.2 Quiz 2
- K1.4.3 Quiz 3
- K1.4.4 Quiz 4
- K1.4.5 Quiz 5
- K1.4.6 Quiz 6
- K1.4.7 Quiz 7
- K1.4.8 Quiz 8
- K1.4.9 Quiz 9
- K1.4.10 Quiz 10
- K1.4.11 Quiz 11
- K1.4.12 Quiz 12
- K1.4.13 Quiz 13
- K1.4.14 Quiz 14
- K1.4.15 Quiz 15
- K1.4.16 Quiz 16
- K1.4.17 Quiz 17
- K1.4.18 Quiz 18
- K1.4.19 Quiz 19
- K1.4.20 Quiz 20
- K1.4.21 Quiz 21
- K1.4.22 Quiz 22
- K1.4.23 Quiz 23
- K1.4.24 Quiz 24
- K1.4.25 Quiz 25
- K1.4.26 Quiz 26
- K1.4.27 Quiz 27
- K1.4.28 Quiz 28
- K1.4.29 Quiz 29
- K1.4.30 Quiz 30
- K1.4.31 Quiz 31
- K1.4.32 Quiz 32
- K1.4.33 Quiz 33
- K1.4.34 Quiz 34
- K1.4.35 Quiz 35
- K1.4.36 Quiz 36
- K1.4.37 Quiz 37
- K1.4.38 Quiz 38
- K1.4.39 Quiz 39
- K1.4.40 Quiz 40
- K1.4.41 Quiz 41
- K1.4.42 Quiz 42
- K1.4.43 Quiz 43
- K1.4.44 Quiz 44
- K1.4.45 Quiz 45
- K1.4.46 Quiz 46
- K1.4.47 Quiz 47
- K1.4.48 Quiz 48
- K1.4.49 Quiz 49
- K1.4.50 Quiz 50
- K1.4.51 Quiz 51
- K1.4.52 Quiz 52
- K1.4.53 Quiz 53
- K1.4.54 Quiz 54
- K1.4.55 Quiz 55
- K1.4.56 Quiz 56
- K1.4.57 Quiz 57
- K1.4.58 Quiz 58
- K1.4.59 Quiz 59
- K1.4.60 Quiz 60
- K1.4.61 Quiz 61
- K1.4.62 Quiz 62
- K1.4.63 Quiz 63
- K1.4.64 Quiz 64
- K1.4.65 Quiz 65
- K1.4.66 Quiz 66
- K1.4.67 Quiz 67
- K1.4.68 Quiz 68
- K1.4.69 Quiz 69
- K1.4.70 Quiz 70
- K1.4.71 Quiz 71
- K1.4.72 Quiz 72
- K1.4.73 Quiz 73
- K1.4.74 Quiz 74
- K1.4.75 Quiz 75
- K1.4.76 Quiz 76
- K1.4.77 Quiz 77
- K1.4.78 Quiz 78
- K1.4.79 Quiz 79
- K1.4.80 Quiz 80
- K1.4.81 Quiz 81
- K1.4.82 Quiz 82
- K1.4.83 Quiz 83
- K1.4.84 Quiz 84
K2. DRUG DISCOVERY

K2.1. Introduction
- K2.1.1 Drug Discovery
- K2.1.2 Target Identification
- K2.1.3 Lead Discovery
- K2.1.4 Lead Optimization
- K2.1.5 Disciplines Involved in Drug Discovery

K2.2. Discovery Methods
- K2.2.1 How Are Leads Discovered?

K2.3. Serendipity
- K2.3.1 The Serendipitous Pathway
- K2.3.2 Penicillin
- K2.3.3 Aspirin
- K2.3.4 Glafenine
- K2.3.5 Furosemide
- K2.3.6 Chlorpromazine
- K2.3.7 Cyclosporin A
- K2.3.8 Viagra

K2.4. Screening
- K2.4.1 The Screening Pathway
- K2.4.2 Example of Molecules Discovered by Screening

K2.5. Chemical Modification
- K2.5.1 The Chemical Modification Pathway
- K2.5.2 Tagamet
- K2.5.3 Beta-Blockers
- K2.5.4 Limitation of the Chemical Modification Approach

K2.6. Rational Drug Design
- K2.6.1 The Rational Pathway
- K2.6.2 Captopril Story
- K2.6.3 Cimetidine Story
- K2.6.4 Advantages of Rational Drug Design

K2.7. Chemistry in Drug Discovery
- K2.7.1 Chemistry in Drug Discovery
- K2.7.2 Synthesis of Complicated Molecules
- K2.7.3 Penicillin
- K2.7.4 Taxol
- K2.7.5 Steroid
- K2.7.6 Three Methods in Synthetic Chemistry
- K2.7.7 Classical
- K2.7.8 Parallel
- K2.7.9 Combinatorial
- K2.7.10 Chemistry in Lead Discovery
- K2.7.11 Protein Kinase Example
- K2.7.12 Chemistry in Lead Optimization
- K2.7.13 Optimization of the Gleevec Series
K2.7.14 CCK-A Receptor Antagonist Example
K2.7.15 Chemistry in Drug Development

K2.8. Patents
K2.8.1 Intellectual Property and Patents
K2.8.2 What Can be Patented?
K2.8.3 Requirements for Patentability
K2.8.4 Lifetime of a Patent
K2.8.5 Effective Patent Lifetime
K2.8.6 Patent Protection

K2.9. CHAPTER QUIZZES (Available only in Teaching Package)
K2.9.1 Quiz 1
K2.9.2 Quiz 2
K2.9.3 Quiz 3
K2.9.4 Quiz 4
K2.9.5 Quiz 5
K2.9.6 Quiz 6
K2.9.7 Quiz 7
K2.9.8 Quiz 8
K2.9.9 Quiz 9
K2.9.10 Quiz 10
K2.9.11 Quiz 11
K2.9.12 Quiz 12
K2.9.13 Quiz 13
K2.9.14 Quiz 14
K2.9.15 Quiz 15
K2.9.16 Quiz 16
K2.9.17 Quiz 17
K2.9.18 Quiz 18
K2.9.19 Quiz 19
K2.9.20 Quiz 20
K2.9.21 Quiz 21
K2.9.22 Quiz 22
K2.9.23 Quiz 23
K2.9.24 Quiz 24
K2.9.25 Quiz 25
K2.9.26 Quiz 26
K2.9.27 Quiz 27

K3. DRUG DEVELOPMENT

K3.1. Introduction
K3.1.1 Drug Development
K3.1.2 Pipe-Line of Development
K3.1.3 Pre-Clinical Development
K3.1.4 Clinical Development
K3.1.5 Post-marketing Surveillance
K3.1.6 Disciplines Involved in Drug Development
K3.1.7 Effective Teams: Interactivity and Cooperativity

K3.2. The Pre-Clinical Studies
K3.2.1 Pre-Clinical Studies
K3.2.2 Chemical Development
K3.2.3 Pharmacological Studies
K3.2.4 Drug Metabolism and Pharmacokinetics
K3.2.5 Toxicology Studies
K3.2.6 Safety Studies
K3.2.7 Carcinogenicity
K3.2.8 Mutagenicity
K3.2.9 Reproduction Studies
K3.2.10 Formulation Development
K3.2.11 Stability Tests
K3.2.12 Disciplines Involved in Pre-Clinical Development

K3.3. Clinical Development
K3.3.1 Introduction on Clinical Trials
K3.3.2 Clinical Trials Phase 1
K3.3.3 Clinical Trials Phase 2
K3.3.4 Clinical Trials Phase 3
K3.3.5 Clinical Trials Phase 4
K3.3.6 Disciplines Involved in Drug Development

K3.4. Regulatory Affairs
K3.4.1 The Role of the Food and Drug Administration (FDA)
K3.4.2 The Investigational New Drug Application (IND)
K3.4.3 The New Drug Application (NDA)
K3.4.4 The Regulatory Approval Process

K3.5. CHAPTER QUIZZES (Available only in Teaching Package)
K3.5.1 Quiz 1
K3.5.2 Quiz 2
K3.5.3 Quiz 3
K3.5.4 Quiz 4
K3.5.5 Quiz 5
K3.5.6 Quiz 6
K3.5.7 Quiz 7
K3.5.8 Quiz 8
K3.5.9 Quiz 9
K3.5.10 Quiz 10
K3.5.11 Quiz 11
K3.5.12 Quiz 12
K3.5.13 Quiz 13
K3.5.14 Quiz 14
K3.5.15 Quiz 15
K3.5.16 Quiz 16
K3.5.17 Quiz 17
K3.5.18 Quiz 18
K3.5.19 Quiz 19
K3.5.20 Quiz 20
K3.5.21 Quiz 21
K3.5.22 Quiz 22
K3.5.23 Quiz 23
K3.5.24 Quiz 24
K3.5.25 Quiz 25
K3.5.26 Quiz 26
- K3.5.27 Quiz 27
- K3.5.28 Quiz 28
- K3.5.29 Quiz 29
- K3.5.30 Quiz 30
- K3.5.31 Quiz 31
- K3.5.32 Quiz 32
- K3.5.33 Quiz 33
- K3.5.34 Quiz 34
- K3.5.35 Quiz 35
- K3.5.36 Quiz 36
- K3.5.37 Quiz 37
- K3.5.38 Quiz 38
- K3.5.39 Quiz 39
- K3.5.40 Quiz 40
- K3.5.41 Quiz 41
- K3.5.42 Quiz 42
- K3.5.43 Quiz 43
- K3.5.44 Quiz 44
- K3.5.45 Quiz 45